Though a lot of valuable algorithms of link prediction have been created, it is still difficult to improve the accuracy of link prediction for some networks. Such difficulties may be due to the intrinsic topological features of these networks. To reveal the correlation between the network topology and the link predictability, we generate a group of artificial networks by keeping some structural features of an initial seed network. Based on these artificial networks and some real networks, we find that five topological measures including clustering coefficient, structural consistency, random walk entropy, network diameter, and average path length significantly show their impact on the link predictability. Then, we define a topological score that combines these important topological features. Specifically, it is an integration of structural consistency with degree-related clustering coefficient defined in this work. This topological score exhibits high correlation with the link predictability. Finally, we propose an algorithm for link prediction based on this topological score. Our experiment on eight real networks verifies good performance of this algorithm in link prediction, which supports the reasonability of the new topological score. This work could be insightful for the study of the link predictability.

1.
C. S.
Pedamallu
and
J.
Posfai
,
Source Code Biol. Med.
5
,
1
(
2010
).
2.
C.
Nowzari
,
V. M.
Preciado
, and
G. J.
Pappas
,
IEEE Control Syst.
36
,
26
(
2016
).
3.
X.
Chen
,
R.
Zhao
,
Z.
Zhang
, and
J.
Zhao
,
Physica A
444
,
194
(
2016
).
4.
L.
and
T.
Zhou
,
Physica A
390
,
1150
(
2011
).
5.
W.
Wang
,
Q.
Zhang
, and
T.
Zhou
,
EPL
98
,
28004
(
2012
).
6.
Q.
Zhang
,
L.
,
W.
Wang
,
Y.
Zhu
, and
T.
Zhou
,
PLoS One
8
,
e55437
(
2013
).
7.
Q.
Zhang
,
X.
Xu
,
Y.
Zhu
, and
T.
Zhou
,
Sci. Rep.
5
,
10350
(
2015
).
8.
D.
Liben-Nowell
and
J.
Kleinberg
,
J. Am. Soc. Inf. Sci. Technol.
58
,
1019
(
2007
).
9.
B.
Barzel
and
A. L.
Barabási
,
Nat. Biotechnol.
31
,
720
(
2013
).
10.
T.
Zhou
,
L.
, and
Y.
Zhang
,
Eur. Phys. J. B
71
,
623
(
2009
).
11.
L.
,
C.
Jin
, and
T.
Zhou
,
Phys. Rev. E
80
,
046122
(
2009
).
12.
C. V.
Cannistraci
,
G.
Alanis-Lobato
, and
T.
Ravasi
,
Sci. Rep.
3
,
1613
(
2013
).
13.
C.
Lei
and
J.
Ruan
,
Bioinformatics
29
,
355
(
2013
).
14.
A.
Clauset
,
C.
Moore
, and
M. E. J.
Newman
,
Nature
453
,
98
(
2008
).
15.
R.
Guimera
and
M.
Sales-Pardo
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
22073
(
2009
).
16.
B.
Karrer
and
M. E. J.
Newman
,
Phys. Rev. E
83
,
016107
(
2011
).
17.
A.
Celisse
,
J. J.
Daudin
, and
L.
Pierre
,
Electron. J. Stat.
6
,
1847
(
2012
).
18.
Z.
Liu
,
J.
He
,
K.
Kapoor
, and
J.
Srivastava
,
PLoS One
8
,
e72908
(
2013
).
19.
L.
and
T.
Zhou
,
Europhys. Lett.
89
,
18001
(
2010
).
20.
X.
Feng
,
J.
Zhao
, and
K.
Xu
,
Eur. Phys. J. B
85
,
1
(
2012
).
21.
Z.
Weng
,
J. A.
Taylor
,
C. E.
Turner
,
J. S.
Brugge
, and
C.
Seidel-Dugan
,
J. Biol. Chem.
268
,
14956
(
1993
).
22.
A.
Kishimoto
,
T.
Ogura
, and
H. A.
Esumi
,
Mol. Biotechnol.
32
,
17
(
2006
).
23.
P.
Uetz
,
L.
Giot
,
G.
Cagney
,
T. A.
Mansfield
,
R. S.
Judson
, and
J. R.
Knight
,
Nature
403
,
623
(
2000
).
24.
P. C.
Havugimana
,
G. T.
Hart
,
T.
Nepusz
,
H.
Yang
,
A. L.
Turinsky
,
Z.
Li
,
P.
Wang
,
D. R.
Boutz
,
V.
Fong
,
S.
Phanse
,
M.
Babu
,
S. A.
Craig
,
P.
Hu
,
C.
Wan
,
J.
Vlasblom
,
V. N.
Dar
,
A.
Bezginov
,
G. W.
Clark
,
G.
Wu
,
S. J.
Wodak
,
E. R. M.
Tillier
,
A.
Paccanaro
,
E. M.
Marcotte
, and
A.
Emili
,
Cell
150
,
1068
(
2012
).
25.
C. V.
Mering
,
L. J.
Jensen
,
B.
Snel
,
S. D.
Hooper
,
M.
Krupp
,
M.
Foglierini
,
N.
Jouffre
,
M. A.
Huynen
, and
P.
Bork
,
Nucleic Acids Res.
33
,
433
(
2005
).
26.
C.
Aicher
,
A. Z.
Jacobs
, and
A.
Clauset
,
J. Complex Netw.
3
,
221
(
2015
).
27.
B.
Zhu
and
Y.
Xia
,
PLoS One
11
,
e0148265
(
2016
).
28.
J.
Zhao
,
L.
Miao
,
J.
Yang
,
H.
Fang
,
Q.
Zhang
,
M.
Nie
,
P.
Holme
, and
T.
Zhou
,
Sci. Rep.
5
,
12261
(
2015
).
29.
L.
,
L.
Pan
,
T.
Zhou
,
Y.
Zhang
, and
H.
Stanley
,
Proc. Natl. Acad. Sci. U.S.A.
112
,
2325
(
2015
).
30.
M. W.
Ahn
and
W. S.
Jung
,
Physica A
429
,
177
(
2015
).
31.
J.
Ding
,
L.
Jiao
,
J.
Wu
,
Y.
Hou
, and
Y.
Qi
,
Physica A
417
,
76
(
2015
).
32.
B.
Zhu
and
Y.
Xia
,
Sci. Rep.
5
,
13707
(
2015
).
33.
S.
Daminelli
,
J. M.
Thomas
,
C.
Durán
, and
C. V.
Cannistraci
,
New J. Phys.
17
,
113037
(
2015
).
34.
A.
Muscoloni
and
C. V.
Cannistraci
, preprint arXiv:1707.09496.
35.
Q.
Huang
,
C.
Zhao
,
X.
Wang
,
X.
Zhang
, and
D.
Yi
,
Physica A
428
,
470
(
2015
).
36.
Y.
Liu
,
C.
Zhao
,
X.
Wang
,
Q.
Huang
,
X.
Zhang
, and
D.
Yi
,
Physica A
454
,
24
(
2016
).
37.
L. R.
Varshney
,
B. L.
Chen
,
E.
Paniagua
,
D. H.
Hall
, and
D. B.
Chklovskii
,
PLoS Comput. Biol.
7
,
e1001066
(
2011
).
38.
R.
Guimerà
,
L.
Danon
,
A.
Díazguilera
,
F.
Giralt
, and
A.
Arenas
,
Phys. Rev. E
68
,
065103
(
2003
).
39.
R. E.
Ulanowicz
,
C.
Bondavalli
, and
M. S.
Egnotovich
, Technical Report, CBL, 2000.
40.
P.
Gleiser
and
L.
Danon
,
Adv. Complex Syst.
6
,
565
(
2003
).
41.
J.
Duch
and
A.
Arenas
,
Phys. Rev. E
72
,
027104
(
2005
).
42.
V.
Batagelj
and
A.
Mrvar
, see vlado.fmf.uni-lj.si/pub/networks/data/ for “Pajek datasets” (last accessed May 19, 2013).
43.
D.
Bu
,
Y.
Zhao
,
L.
Cai
,
H.
Xue
,
X.
Zhu
,
H.
Lu
,
J.
Zhang
,
S.
Sun
,
L.
Ling
,
N.
Zhang
,
G.
Li
, and
R.
Chen
,
Nucleic Acids Res.
31
,
2443
(
2003
).
44.
M. E. J.
Newman
,
Phys. Rev. E
74
,
036104
(
2006
).
45.
P.
Erdös
and
A.
Rényi
,
Publ. Math. Debrecen
6
,
290
(
1959
).
46.
J.
Zhao
,
L.
Tao
,
H.
Yu
,
J.
Luo
,
Z.
Cao
, and
Y.
Li
,
Chin. Phys.
16
,
3571
(
2007
).
47.
C.
Orsini
,
M. M.
Dankulov
,
P.
Colomer-de-Simón
,
A.
Jamakovic
,
P.
Mahadevan
,
A.
Vahdat
,
K. E.
Bassler
,
Z.
Toroczkai
,
M.
Boguñá
,
G.
Caldarelli
,
S.
Fortunato
, and
D.
Krioukov
,
Nat. Commun.
6
,
8627
(
2015
).
48.
A.
Muscoloni
and
C. V.
Cannistraci
,
New J. Phys.
20
,
052002
(
2018
).
49.
A.
Muscoloni
and
C. V.
Cannistraci
,
New J. Phys.
20
,
063022
(
2018
).
50.
M. E. J.
Newman
,
Phys. Rev. Lett.
89
,
208701
(
2002
).
51.
D.
Mavroeidis
and
E.
Bingham
,
Knowl. Inf. Syst.
23
,
243
(
2010
).
52.
Z.
You
and
B.
Liu
,
Appl. Math. Lett.
25
,
1245
(
2012
).
53.
B.
Wang
,
H.
Tang
,
C.
Guo
, and
Z.
Xiu
,
Physica A
363
,
591
(
2006
).
54.
L. A.
Adamic
and
E.
Adar
,
Soc. Netw.
25
,
211
(
2003
).
55.
Q.
Ou
,
Y.
Jin
,
T.
Zhou
,
B.
Wang
, and
B.
Yin
,
Phys. Rev. E
75
,
021102
(
2007
).
56.
E. A.
Leicht
,
P.
Holme
, and
M. E. J.
Newman
,
Phys. Rev. E
73
,
026120
(
2006
).
57.
J.
Kunegis
,
A.
Lommatzsch
, and
C.
Bauckhage
, in International Conference on Pattern Recognition (IEEE, 2008), p. 1.
58.
S.
Brin
and
L.
Page
,
Netw. ISDN Syst.
30
,
107
(
1998
).
59.
P.
Chebotarev
and
E. V.
Shamis
,
Inst. Control Sci.
9
,
125
(
1997
).
60.
F.
Fouss
,
A.
Pirotte
,
J. M.
Renders
, and
M.
Saerens
,
IEEE Trans. Knowl. Data Eng.
19
,
355
(
2007
).
61.
R.
Pech
,
D.
Hao
,
L.
Pan
,
H.
Cheng
, and
T.
Zhou
,
EPL
117
,
38002
(
2017
).
You do not currently have access to this content.