The resilience of unmanned aerial vehicle (UAV) swarm is its joint capability to resist possible threat, adapt to disruptive events, and restore its intended performance under a specific time period. The quantitative assessment of the UAV swarm resilience requires a thorough understanding of its missions. In this paper, a mission-oriented framework is proposed to implement the resilience evaluation for the UAV swarm. Guided by the framework, the resilience evaluation for the UAV swarm performing joint reconnaissance mission is studied. A UAV swarm model is developed for joint reconnaissance mission based on complex networks and agent-based models. The following aspects of the UAV swarm are considered in the proposed model, namely, the mission orientation, UAV attributes, swarm topology, UAV cooperative strategy, UAV information exchange and fusion strategy, potential threats, recovery strategies, etc. Then, a novel performance metric is proposed to measure the mission capability of the UAV swarm performing joint reconnaissance mission. Results from the simulations show that, compared with existing studies, the proposed approach can provide more realistic and objective resilience evaluation for the mission-oriented UAV swarm. The above works can be used to support the decision making and the optimal design of the UAV swarm, given different missions.

1.
J.
Gu
,
T.
Su
,
Q.
Wang
,
X.
Du
, and
M.
Guizani
, “
Multiple moving targets surveillance based on a cooperative network for multi-UAV
,”
IEEE Commun. Mag.
56
,
82
89
(
2018
).
2.
M.
Azari
,
F.
Rosas
,
K. C.
Chen
, and
S.
Pollin
, “
Ultra reliable UAV communication using altitude and cooperation diversity
,”
IEEE Trans. Commun.
66
(
1
),
330
344
(
2017
).
3.
D.
Aksaray
,
A.
Yasin Yazıcıoğlu
,
E.
Feron
, and
D. N.
Mavris
, “
Message-passing strategy for decentralized connectivity maintenance in multiagent surveillance
,”
J. Guid. Control Dyn.
39
,
542
555
(
2016
).
4.
Z.
He
,
R.
Su
,
W.
Meng
,
R.
Teo
, and
L.
Xie
, “
Integrated multi-agent system framework: Decentralised search, tasking and tracking
,”
IET Control Theory A
9
,
493
502
(
2015
).
5.
H.
Kurdi
,
J.
How
, and
G.
Bautista
, “
Bio-inspired algorithm for task allocation in multi-uav search and rescue missions
,”
AIAA Paper No. 2016-1377,
2016
.
6.
D.
Ye
,
M.
Zhang
, and
D.
Sutanto
, “
Self-organization in an agent network: A mechanism and a potential application
,”
Decis. Support Syst.
53
,
406
417
(
2012
).
7.
J.
Berger
and
J.
Happe
, “
Co-evolutionary search path planning under constrained information-sharing for a cooperative unmanned aerial vehicle team
,” in
IEEE Congress on Evolutionary Computation
(IEEE,
2010
), pp
1
8
.
8.
R.
Peng
, “
Joint routing and aborting optimization of cooperative unmanned aerial vehicles
,”
Reliab. Eng. Syst. Saf.
177
,
131
137
(
2018
).
9.
C.
Gao
,
Z.
Zhen
, and
H.
Gong
, “
A self-organized search and attack algorithm for multiple unmanned aerial vehicles
,”
Aerosp. Sci. Technol.
54
,
229
240
(
2016
).
10.
Y.
Yang
,
M. M.
Polycarpou
, and
A. A.
Minai
, “
Multi-UAV cooperative search using an opportunistic learning method
,”
J. Dyn. Syst. Meas. Control.
129
,
716
(
2007
).
11.
C.
Di Franco
and
G.
Buttazzo
, “
Coverage path planning for UAVs photogrammetry with energy and resolution constraints
,”
J. Intell. Robot. Syst.
83
,
445
462
(
2016
).
12.
J.
Chen
,
X.
Zhang
,
B.
Xin
, and
H.
Fang
, “
Coordination between unmanned aerial and ground vehicles: A taxonomy and optimization perspective
,”
IEEE Trans. Cybern.
46
,
959
972
(
2017
).
13.
J.
Capitan
,
L.
Merino
, and
A.
Ollero
, “
Cooperative decision-making under uncertainties for multi-target surveillance with multiples UAVs
,”
J. Intell. Robot. Syst.
84
,
371
386
(
2016
).
14.
E.
Adamey
,
A. E.
Oğuz
, and
Ü.
Özgüner
, “
Collaborative multi-MSA multi-target tracking and surveillance: A divide & conquer method using region allocation trees
,”
J. Intell. Robot. Syst.
87
,
471
485
(
2017
).
15.
Z.
Zhen
,
D.
Xing
, and
C.
Gao
, “
Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm
,”
Aerosp. Sci. Technol.
76
,
402
411
(
2018
).
16.
S.
Bernardini
,
M.
Fox
, and
D.
Long
, “
Combining temporal planning with probabilistic reasoning for autonomous surveillance missions
,”
Auton. Robots
41
,
181
203
(
2017
).
17.
X.
Yu
and
Y.
Zhang
, “
Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects
,”
Prog. Aerosp. Sci.
74
,
152
166
(
2015
).
18.
W.
Yu
,
G.
Chen
,
M.
Cao
,
J.
, and
H.-T.
Zhang
, “
Swarming behaviors in multi-agent systems with nonlinear dynamics
,”
Chaos
23
,
043118
(
2013
).
19.
H. T.
Tran
,
M.
Balchanos
,
J. C.
Domerçant
, and
D. N.
Mavris
, “
A framework for the quantitative assessment of performance-based system resilience
,”
Reliab. Eng. Syst. Saf.
158
,
73
84
(
2017
).
20.
S.
Hosseini
,
K.
Barker
, and
J. E.
Ramirez-Marquez
, “
A review of definitions and measures of system resilience
,”
Reliab. Eng. Syst. Saf.
145
,
47
61
(
2016
).
21.
P.
Uday
and
K.
Marais
, “
Designing resilient systems-of-systems: A survey of metrics, methods, and challenges
,”
Syst. Eng.
18
,
491
510
(
2015
).
22.
H.
Zhu
,
C.
Zhang
, and
M.
Ouyang
, ”
Influence of overloading on the reliability and critical components of networked critical infrastructures
,”
Qual. Reliab. Eng. Int.
35
,
711
731
(
2019
).
23.
C.
Zhang
,
J. E.
Ramirez-Marquez
, and
C. M. R.
Sanseverino
, “
A holistic method for reliability performance assessment and critical components detection in complex networks
,”
IIE Trans.
43
,
661
675
(
2011
).
24.
M.
Panteli
,
D. N.
Trakas
,
P.
Mancarella
, and
N. D.
Hatziargyriou
, “
Power systems resilience assessment: Hardening and smart operational enhancement strategies
,”
Proc. IEEE
105
,
1202
1213
(
2017
).
25.
A.
Kwasinski
, “
Quantitative model and metrics of electrical grids’ resilience evaluated at a power distribution level
,”
Energies
9
,
93
(
2016
).
26.
S.
Zhao
,
X.
Liu
, and
Y.
Zhuo
, “
Hybrid hidden markov models for resilience metric in a dynamic infrastructure system
,”
IFAC-PapersOnLine
49
,
343
348
(
2016
).
27.
R.
Biggs
,
M.
Schlüter
,
D.
Biggs
,
E. L.
Bohensky
,
S.
BurnSilver
,
G.
Cundill
 et al., “
Toward principles for enhancing the resilience of ecosystem services
,”
Annu. Rev. Environ. Resour.
37
,
421
448
(
2012
).
28.
M. R.
Hipsey
,
D. P.
Hamilton
,
P. C.
Hanson
,
C. C.
Carey
,
J. Z.
Coletti
,
J. S.
Read
 et al., “
Predicting the resilience and recovery of aquatic systems: A framework for model evolution within environmental observatories: Predicting the resilience of aquatic systems
,”
Water Resour. Res.
51
,
7023
7043
(
2015
).
29.
R.
Martin
, “
Regional economic resilience, hysteresis and recessionary shocks
,”
J. Econ. Geogr.
12
,
1
32
(
2012
).
30.
M.
Ouyang
and
L.
Dueñas-Osorio
, “
Time-dependent resilience assessment and improvement of urban infrastructure systems
,”
Chaos
22
,
033122
(
2012
).
31.
E. D.
Vugrin
,
D. E.
Warren
,
M. A.
Ehlen
, and
R. C.
Camphouse
, “
A framework for assessing the resilience of infrastructure and economic systems
,” in
Sustainable and Resilient Critical Infrastructure Systems
, edited by
K.
Gopalakrishnan
and
S.
Peeta
(Springer,
Heidelberg
,
Berlin
,
2010
), pp.
77
116
.
32.
E. D.
Vugrin
,
D. E.
Warren
, and
M. A.
Ehlen
, “
A resilience assessment framework for infrastructure and economic systems: Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane
,”
Process Saf. Prog.
30
,
280
290
(
2011
).
33.
C.
Nan
and
G.
Sansavini
, “
A quantitative method for assessing resilience of interdependent infrastructures
,”
Reliab. Eng. Syst. Saf.
157
,
35
53
(
2017
).
34.
X.
Zhang
,
S.
Mahadevan
,
S.
Sankararaman
, and
K.
Goebel
, “
Resilience-based network design under uncertainty
,”
Reliab. Eng. Syst. Saf.
169
,
364
379
(
2018
).
35.
G.
Pumpuni-Lenss
,
T.
Blackburn
, and
A.
Garstenauer
, “
Resilience in complex systems: An agent-based approach: Resilience in complex systems
,”
Syst. Eng.
20
,
158
172
(
2017
).
36.
S.
Bao
,
C.
Zhang
,
M.
Ouyang
, and
L.
Miao
, “
An integrated tri-level model for enhancing the resilience of facilities against intentional attacks
,”
Ann. Oper. Res.
258
,
1
31
(
2017
).
37.
C.
Cheng
,
G.
Bai
,
Y.-A.
Zhang
, and
J.
Tao
, “Improved integrated metric for quantitative assessment of resilience,” J. Syst. Sci. Syst. Eng. (submitted).
38.
H. T.
Tran
and
D. N.
Mavris
, “
A system-of-systems approach for assessing the resilience of reconfigurable command and control networks
,”
AIAA Paper No. 2015-0640
,
2015
.
39.
H. T.
Tran
,
J. C.
Domerçant
, and
D. N.
Mavris
, “
A network-based cost comparison of resilient and robust system-of-systems
,”
Proc. Comput. Sci.
95
,
126
133
(
2016
).
40.
K.
Zhao
,
A.
Kumar
,
T. P.
Harrison
, and
J.
Yen
, “
Analyzing the resilience of complex supply network topologies against random and targeted disruptions
,”
IEEE Syst. J.
5
,
28
39
(
2011
).
41.
A. L.
Barabasi
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
512
(
1999
).
42.
P.
Li
and
H.
Duan
, “
A potential game approach to multiple UAV cooperative search and surveillance
,”
Aerosp. Sci. Technol.
68
,
403
415
(
2017
).
43.
J. R.
Marden
,
G.
Arslan
, and
J. S.
Shamma
, “
Cooperative control and potential games
,”
IEEE Trans. Syst. Man Cybern. B Cybern.
39
,
1393
(
2009
).
44.
Y.
Liao
,
Y.
Jin
,
A. A.
Minai
, and
M. M.
Polycarpou
, “
Information sharing in cooperative unmanned aerial vehicle teams
,” in
IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference, Cdc–Ecc ‘05
(
2005
), pp.
90
95
.
45.
J.
Hu
,
L.
Xie
,
K.-Y.
Lum
, and
J.
Xu
, “
Multiagent information fusion and cooperative control in target search
,”
IEEE Trans. Control Syst. Technol.
21
,
1223
1235
(
2013
).
46.
D.
Tian
,
J.
Zhou
, and
Z.
Sheng
, “
An adaptive fusion strategy for distributed information estimation over cooperative multi-agent networks
,”
IEEE Trans. Inf. Theory
63
,
3076
3091
(
2017
).
47.
A.
Khan
,
E.
Yanmaz
, and
B.
Rinner
, “
Information merging in multi-UAV cooperative search
.” in
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
(
IEEE
,
2014
), pp.
3122
3129
.
48.
T.
Millet
,
D.
Casbeer
,
T.
Mercker
, and
J.
Bishop
, “
Multi-agent decentralized search of a probability map with communication constraints
,”
AIAA Paper No. 2010-8424
,
2010
.
49.
C.
Zhang
and
J. E.
Ramirez-Marquez
, “
Protecting critical infrastructures against intentional attacks: A two-stage game with incomplete information
,”
IIE Trans.
45
,
244
258
(
2013
).
50.
C.
Zhang
,
J. E.
Ramirez-Marquez
, and
J.
Wang
, “
Critical infrastructure protection using secrecy—A discrete simultaneous game
,”
Eur. J. Oper. Res.
242
,
212
221
(
2015
).
51.
C.
Zhang
,
J. E.
Ramirez-Marquez
, and
Q.
Li
, “
Locating and protecting facilities from intentional attacks using secrecy
,”
Reliab. Eng. Syst. Saf.
169
,
51
62
(
2018
).
52.
Y.
Dong
,
N.
Gupta
, and
N.
Chopra
, “
Content modification attacks on consensus seeking multi-agent system with double-integrator dynamics
,”
Chaos
26
,
116305
(
2016
).
53.
C.
Liu
,
D.
Li
,
E.
Zio
, and
R.
Kang
, “
A modeling framework for system restoration from cascading failures
,”
PLoS ONE
9
,
e112363
(
2014
).
54.
C.
Liu
,
D.
Li
,
B.
Fu
,
S.
Yang
,
Y.
Wang
, and
G.
Lu
, “
Modeling of self-healing against cascading overload failures in complex networks
,”
Europhys. Lett.
107
,
68003
(
2014
).
55.
M.
Ouyang
and
L.
Zhao
, “
Do topological models contribute to decision making on post-disaster electric power system restoration?
,”
Chaos
24
,
043131
(
2014
).
56.
A. A.
Rad
,
M.
Jalili
, and
M.
Hasler
, “
Efficient rewirings for enhancing synchronizability of dynamical networks
,”
Chaos
18
,
037104
(
2008
).
57.
D.
Li
,
Q.
Zhang
,
E.
Zio
,
S.
Havlin
, and
R.
Kang
, “
Network reliability analysis based on percolation theory
,”
Reliab. Eng. Syst. Saf.
142
,
556
562
(
2015
).
You do not currently have access to this content.