Spatiotemporal chaos collapses to either a rest state or a propagating pulse in a ring network of diffusively coupled, excitable Morris–Lecar neurons. Adding global varying synaptic coupling to the ring network reveals complex transient behavior. Spatiotemporal chaos collapses into a transient pulse that reinitiates spatiotemporal chaos to allow sequential pattern switching until a collapse to the rest state. A domain of irregular neuron activity coexists with a domain of inactive neurons forming a transient chimeralike state. Transient spatial localization of the chimeralike state is observed for stronger synapses.

1.
T.
Tél
and
Y. C.
Lai
, “
Chaotic transients in spatially extended systems
,”
Phys. Rep.
460
,
245
(
2008
).
2.
T. J.
Kaper
,
M. A.
Kramer
, and
H. G.
Rotstein
, “
Focus issue: Rhythms and dynamic transitions in neurological disease: Modeling, computation, and experiment
,”
Chaos
23
,
046001
(
2013
).
3.
H.
Fujii
and
I.
Tsuda
, “
Neocortical gap junction-coupled interneuron systems may induce chaotic behavior itinerant among quasi-attractors exhibiting transient synchrony
,”
Neurocomputing
58–60
,
151
(
2004
).
4.
J.
Lee
,
B.
Ermentrout
, and
M.
Bodner
, “
From cognitive networks to seizures: Stimulus evoked dynamics in a coupled cortical network
,”
Chaos
23
,
043111
(
2013
).
5.
M. A.
Dahlem
and
E. P.
Chronicle
, “
A computational perspective on migraine aura
,”
Prog. Neurobiol.
74
,
351
(
2004
).
6.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
(
1993
).
7.
S.
Kraut
and
U.
Feudel
, “
Multistability, noise and attractor hopping: The crucial role of chaotic saddles
,”
Phys. Rev. E
66
,
015207(R)
(
2002
).
8.
M. I.
Rabinovich
and
P.
Varona
, “
Robust transient dynamics and brain functions
,”
Front. Comput. Neurosci.
5
,
24
(
2011
).
9.
S.
Jahnke
,
R. M.
Memmesheimer
, and
M.
Timme
, “
Stable irregular dynamics in complex neural networks
,”
Phys. Rev. Lett.
100
,
048102
(
2008
).
10.
R.
Zillmer
,
N.
Brunel
, and
D.
Hansel
, “
Very long transients, irregular firing, and chaotic dynamics in networks of randomly connected inhibitory integrate-and-fire neurons
,”
Phys. Rev. E
79
,
031909
(
2009
).
11.
S.
Luccioli
and
A.
Politi
, “
Irregular collective behavior of heterogeneous neural networks
,”
Phys. Rev. Lett.
105
,
158104
(
2010
).
12.
F.
Schittler Neves
and
M.
Timme
, “
Computation by switching in complex networks of states
,”
Phys. Rev. Lett.
109
,
018701
(
2012
).
13.
H.-L.
Zou
,
Y.
Katori
,
Z.-C.
Deng
,
K.
Aihara
, and
Y.-C.
Lai
, “
Controlled generation of switching dynamics among metastable states in pulse-coupled oscillator networks
,”
Chaos
25
,
103109
(
2015
).
14.
J.
Lafranceschina
and
R.
Wackerbauer
, “
Impact of weak excitatory synapses on chaotic transients in a diffusively coupled Morris-Lecar neuronal network
,”
Chaos
25
,
013119
(
2015
).
15.
G.
Ansmann
,
K.
Lehnertz
, and
U.
Feudel
, “
Self-induced switchings between multiple space-time patterns on complex networks of excitable units
,”
Phys. Rev. X
6
,
011030
(
2016
).
16.
Y. C.
Lai
and
T.
Tél
, Transient Chaos: Complex Dynamics on Finite Time Scales, Applied Mathematical Sciences (Springer, New York, 2011).
17.
A.
Wacker
,
S.
Bose
, and
E.
Schöll
, “
Transient spatio-temporal chaos in a reaction-diffusion model
,”
Europhys. Lett.
31
,
257
(
1995
).
18.
M. C.
Strain
and
H. S.
Greenside
, “
Size-dependent transition to high-dimensional chaotic dynamics in a two-dimensional excitable medium
,”
Phys. Rev. Lett.
80
,
2306
(
1998
).
19.
R.
Wackerbauer
and
K.
Showalter
, “
Collapse of spatiotemporal chaos
,”
Phys. Rev. Lett.
91
,
174103
(
2003
).
20.
K.
Keplinger
and
R.
Wackerbauer
, “
Transient spatiotemporal chaos in the Morris-Lecar neuronal ring network
,”
Chaos
24
,
013126
(
2014
).
21.
H.
Hartle
and
R.
Wackerbauer
, “
Transient chaos and associated system-intrinsic switching of spacetime patterns in two synaptically coupled layers of Morris-Lecar neurons
,”
Phys. Rev. E
96
,
032223
(
2017
).
22.
B.
Hof
,
J.
Westerweel
,
T. M.
Schneider
, and
B.
Eckhardt
, “
Finite lifetime of turbulence in shear flows
,”
Nature
443
,
59
(
2006
).
23.
D.
Ruelle
,
Chaotic Evolution and Strange Attractors
(
Cambridge University Press
,
New York
,
1989
).
24.
M. P.
Fishman
and
D. A.
Egolf
, “
Revealing the building blocks of spatiotemporal chaos: Deviations from extensivity
,”
Phys. Rev. Lett.
96
,
054103
(
2006
).
25.
D.
Stahlke
and
R.
Wackerbauer
, “
Length scale of interaction in spatiotemporal chaos
,”
Phys. Rev. E
83
,
046204
(
2011
).
26.
D.
Stahlke
and
R.
Wackerbauer
, “
Transient spatiotemporal chaos is extensive in three reaction-diffusion networks
,”
Phys. Rev. E
80
,
056211
(
2009
).
27.
R.
Wackerbauer
, “
Master stability analysis in transient spatiotemporal chaos
,”
Phys. Rev. E
76
,
056207
(
2007
).
28.
J. P.
Crutchfield
and
K.
Kaneko
, “
Are attractors relevant to turbulence
,”
Phys. Rev. Lett.
60
,
2715
(
1988
).
29.
R.
Wackerbauer
and
S.
Kobayashi
, “
Noise can delay and advance the collapse of spatiotemporal chaos
,”
Phys. Rev. E
75
,
066209
(
2007
).
30.
S.
Yonker
and
R.
Wackerbauer
, “
Nonloncal coupling can prevent the collapse of spatiotemporal chaos
,”
Phys. Rev. E
73
,
026218
(
2006
).
31.
R.
Wackerbauer
,
H.
Sun
, and
K.
Showalter
, “
Self-segregation of competitive chaotic populations
,”
Phys. Rev. Lett.
84
,
5018
(
2000
).
32.
Y.
Kuramoto
and
D.
Battogtokh
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
5
,
380
(
2002
).
33.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
34.
A. M.
Hagerstrom
,
T. E.
Murphy
,
R.
Roy
,
P.
Hövel
,
I.
Omelchenko
, and
E.
Schöll
, “
Experimental observation of chimeras in coupled-map lattices
,”
Nat. Phys.
8
,
658
(
2012
).
35.
V. M.
Bastidas
,
I.
Omelchenko
,
A.
Zakharova
,
E.
Schöll
, and
T.
Brandes
, “
Quantum signatures of chimera states
,”
Phys. Rev. E
92
,
062924
(
2015
).
36.
M. R.
Tinsley
,
S.
Nkomo
, and
K.
Showalter
, “
Chimera and phase-cluster states in populations of coupled chemical oscillators
,”
Nat. Phys.
8
,
662
(
2012
).
37.
M.
Wickramasinghe
and
I. Z.
Kiss
, “
Spatially organized dynamical states in chemical oscillator networks: Synchronization, differentiation, and chimera patterns
,”
PLoS One
8
,
e80586
(
2013
).
38.
E. M. E.
Arumugam
and
M. L.
Spano
, “
A chimeric path to neuronal synchronization
,”
Chaos
25
,
013107
(
2015
).
39.
M.
Wolfrum
and
O. E.
Omel’chenko
, “
Chimera states are chaotic transients
,”
Phys. Rev. E
84
,
015201
(
2011
).
40.
S. W.
Haugland
,
L.
Schmidt
, and
K.
Krischer
, “
Self-organized alternating chimera states in oscillatory media
,”
Nat. Sci. Rep.
5
,
9883
(
2015
).
41.
I.
Omelchenko
,
A.
Provata
,
J.
Hizanidis
,
E.
Schöll
, and
P.
Hövel
, “
Robustness of chimera states for coupled FitzHugh-Nagumo oscillators
,”
Phys. Rev. E
91
,
022917
(
2015
).
42.
B. K.
Bera
,
D.
Ghosh
, and
T.
Banerjee
, “
Imperfect traveling chimera states induced by local synaptic gradient coupling
,”
Phys. Rev. E
94
,
012215
(
2016
).
43.
S.
Majhi
,
M.
Perc
, and
D.
Ghosh
, “
Chimera states in uncoupled neurons induced by a multilayer structure
,”
Nat. Sci. Rep.
6
,
39033
(
2016
).
44.
C.
Bick
,
M.
Sebek
,
R.
Tönjes
, and
I. Z.
Kiss
, “
Robust weak chimeras in oscillator networks with delayed linear and quadratic coupling
,”
Phys. Rev. Lett.
119
,
168301
(
2017
).
45.
F. P.
Kemeth
,
S. W.
Haugland
,
L.
Schmidt
,
I. G.
Kevrekidis
, and
K.
Krischer
, “
A classification scheme for chimera states
,”
Chaos
26
,
094815
(
2016
).
46.
E. A.
Martens
,
M. J.
Panaggio
, and
D. M.
Abrams
, “
Basins of attraction for chimera states
,”
New J. Phys.
18
,
022002
(
2016
).
47.
V.
Santos
,
J. D.
Szezech
,
A. M.
Batista
,
K. C.
Iarosz
,
M. S.
Baptista
,
H. P.
Ren
,
C.
Grebogi
,
R. L.
Viana
,
I. L.
Caldas
,
Y. L.
Maistrenko
, and
K.
Kurths
, “
Riddling: Chimera’s dilemma
,”
Chaos
28
,
081105
(
2018
).
48.
A. E.
Botha
and
M. R.
Kolahchi
, “
Analysis of chimera states as drive-response systems
,”
Nat. Sci. Rep.
8
,
1830
(
2018
).
49.
N. C.
Rattenborg
, “
Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep
,”
Neurosci. Biobehav. Rev.
24
,
817
(
2000
).
50.
R. G.
Andrzejak
,
C.
Rummel
,
F.
Mormann
, and
K.
Schindler
, “
All together now: Analogies between chimera state collapses and epileptic seizures
,”
Nat. Sci. Rep.
6
,
23000
(
2016
).
51.
S.
Majhi
,
B. K.
Bera
,
D.
Ghosh
, and
M.
Perc
, “
Chimera states in neuronal networks: A review
,”
Phys. Life Rev.
(in press).
52.
H.
Sakaguchi
, “
Instability of synchronized motion in nonlocally coupled neural oscillators
,”
Phys. Rev. E
73
,
031907
(
2006
).
53.
T. A.
Glaze
,
S.
Lewis
, and
S.
Bahar
, “
Chimera states in a Hodgkin-Huxley model of thermally sensitive neurons
,”
Chaos
26
,
083119
(
2016
).
54.
G.
Argyropoulos
,
T.
Kasimatis
, and
A.
Provata
, “
Chimera patterns and subthreshold oscillations in two-dimensional networks of fractally coupled leaky integrate-and-fire neurons
,”
Phys. Rev. E
99
,
022208
(
2019
).
55.
N.
Semenova
,
A.
Zakharova
,
V.
Anishchenko
, and
E.
Schöll
, “
Coherence-resonance chimeras in a network of excitable elements
,”
Phys. Rev. Lett.
117
,
014102
(
2016
).
56.
C.
Morris
and
H.
Lecar
, “
Voltage oscillations in the barnacle giant muscle fiber
,”
Biophys. J.
35
,
193
(
1981
).
57.
K.
Tsumoto
,
H.
Kitajima
,
T.
Yoshinaga
,
K.
Aihara
, and
H.
Kawakami
, “
Bifurcations in Morris-Lecar neuron model
,”
Neurocomputing
69
,
293
(
2006
).
58.
G. B.
Ermentrout
and
D. H.
Terman
, Mathematical Foundations of Neuroscience, Interdisciplinary Applied Mathematics (Springer, New York, 2010).
59.
A.
Destexhe
,
Z. F.
Mainen
, and
T. J.
Sejnowski
, “
Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism
,”
J. Comput. Neurosci.
1
,
195
(
1994
).
60.
G.
Benettin
,
L.
Galgani
, and
J.-M.
Strelcyn
, “
Kolmogorov entropy and numerical experiments
,”
Phys. Rev. A
14
,
2338
(
1976
).
61.
The numerical calculation60  of λ uses a renormalization time interval of δt=50ms and an initial trajectory separation of d0=1010mV. A total of 1000 renormalizations were calculated to reach convergence; the average of the last 200 measurements determine λ and standard deviation.
62.
A simulation runs until the STC dynamics collapses to a rest or to a pulse state, or until the computation time of 5×106ms is reached, or until the system behavior was locked for 5×106ms. In that case, the lifetime represents the time before pattern is locked for more than 5×106ms.
63.
M. I.
Rabinovich
and
P.
Varona
, “
Robust transient dynamics and brain functions
,”
Front. Comput. Neurosci.
5
,
24
(
2011
).
64.
O.
Mazor
and
G.
Laurent
, “
Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons
,”
Neuron
48
,
661
(
2005
).
65.
C. R.
Laing
and
C. C.
Chow
, “
Stationary bumps in networks of spiking neurons
,”
Neural Comput.
13
,
1473
(
2001
).
66.
C. R.
Laing
, “
Bumps in small-world networks
,”
Front. Comput. Neurosci.
10
,
53
(
2016
).
67.
T. P.
Vogels
,
H.
Sprekeler
,
F.
Zenke
,
C.
Clopath
, and
W.
Gerstner
, “
Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks
,”
Science
334
,
1569
(
2011
).
You do not currently have access to this content.