The modern electric power grid is evolving rapidly into such a state that distributed controllers and two-way energy and information flow are replacing the traditional paradigm of electricity distribution and energy management. Therefore, a power grid coupled with a communication network is playing a pivotal role in establishing modern electric power systems. Previous cascading failure analysis in power systems focused more on the physical network, while falling short of investigations on the coupling effect of interdependency of the integrated electricity and communication networks, i.e., cyber-physical power systems. To address such a pressing issue, this study introduces a novel stochastic cascading failure model, considering the interdependency between the cyber network and power network. A multiagent system and a novel protection relay model are incorporated into the proposed model. To apply the proposed analytical method, a test power system, the IEEE 68-bs power system, is used to study the impacts of a range of interdependencies and cyber network topological structures on the cascading failure. Simulation results show the necessity and effects of consideration of cyber communication network when investigating power system cascading failures. The study also provides useful information on robustness and vulnerability of a particular power grid, given different communication topologies and interdependencies.

1.
X.
Yu
and
Y.
Xue
, “
Smart grids: A cyber–physical systems perspective
,”
Proc. IEEE
104
,
1058
1070
(
2016
).
2.
R. M.
Lee
,
M. J.
Assante
, and
T.
Conway
, Analysis of the Cyber Attack on the Ukrainian Power Grid (Electricity Information Sharing and Analysis Center (E-ISAC), 2016).
3.
U.S. Department of Energy
, Quadrennial Technology Review: An Assessment of Energy Technologies and Research Opportunities, September (U.S. Department of Energy, 2015), pp. 1–505.
4.
X. F.
Wang
and
G.
Chen
, “
Complex networks: Small-world, scale-free and beyond
,”
IEEE Circuits Syst. Mag.
3
,
6
20
(
2003
).
5.
A. E.
Motter
and
Y.-C.
Lai
, “
Cascade-based attacks on complex networks
,”
Phys. Rev. E
66
,
065102
(
2002
).
6.
P.
Hines
,
E.
Cotilla-Sanchez
, and
S.
Blumsack
, “
Do topological models provide good information about electricity infrastructure vulnerability?
,”
Chaos
20
,
033122
(
2010
).
7.
R.
Albert
,
I.
Albert
, and
G. L.
Nakarado
, “
Structural vulnerability of the north american power grid
,”
Phys. Rev. E
69
,
025103
(
2004
).
8.
W.
Fan
,
S.
Huang
, and
S.
Mei
, “
Invulnerability of power grids based on maximum flow theory
,”
Physica A
462
,
977
985
(
2016
).
9.
S. V.
Buldyrev
,
R.
Parshani
,
G.
Paul
,
H. E.
Stanley
, and
S.
Havlin
, “
Catastrophic cascade of failures in interdependent networks
,”
Nature
464
,
1025
(
2010
).
10.
J.
Guo
,
Y.
Han
,
C.
Guo
,
F.
Lou
, and
Y.
Wang
, “
Modeling and vulnerability analysis of cyber-physical power systems considering network topology and power flow properties
,”
Energies
10
,
87
(
2017
).
11.
X.
Zhang
,
D.
Liu
,
C.
Zhan
, and
C. K.
Tse
, “
Effects of cyber coupling on cascading failures in power systems
,”
IEEE J. Emerg. Sel. Top. Circuits Syst.
7
,
228
238
(
2017
).
12.
K.
Schneider
,
C.-C.
Liu
, and
J.-P.
Paul
, “
Assessment of interactions between power and telecommunications infrastructures
,”
IEEE Trans. Power Syst.
21
,
1123
1130
(
2006
).
13.
S.
Ankaliki
, “
Energy control center functions for power system
,”
Int. J. Math. Sci. Technol. Humanit.
2
,
205
212
(
2012
).
14.
J.
Song
,
E.
Cotilla-Sanchez
,
G.
Ghanavati
, and
P. D.
Hines
, “
Dynamic modeling of cascading failure in power systems
,”
IEEE Trans. Power Syst.
31
,
2085
2095
(
2016
).
15.
X.
Zhang
,
C.
Zhan
, and
C. K.
Tse
, “
Modeling the dynamics of cascading failures in power systems
,”
IEEE J. Emerg. Sel. Top. Circuits Syst.
7
,
192
204
(
2017
).
16.
X.
Zhang
and
C. K.
Tse
, “
Assessment of robustness of power systems from a network perspective
,”
IEEE J. Emerg. Sel. Top. Circuits Syst.
5
,
456
464
(
2015
).
17.
S. D.
McArthur
,
E. M.
Davidson
,
V. M.
Catterson
,
A. L.
Dimeas
,
N. D.
Hatziargyriou
,
F.
Ponci
, and
T.
Funabashi
, “
Multi-agent systems for power engineering applications—Part I: Concepts, approaches, and technical challenges
,”
IEEE Trans. Power Syst.
22
,
1743
1752
(
2007
).
18.
J. D.
Taft
and
A. S.
Becker-Dippmann
, “The emerging interdependence of the electric power grid & information and communication technology,” Technical Report, Pacific Northwest National Lab. (PNNL), Richland, WA, USA, 2015.
19.
M.
Ouyang
, “
Comparisons of purely topological model, betweenness based model and direct current power flow model to analyze power grid vulnerability
,”
Chaos
23
,
023114
(
2013
).
20.
I.
Dobson
,
B. A.
Carreras
,
V. E.
Lynch
, and
D. E.
Newman
, “
Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization
,”
Chaos
17
,
026103
(
2007
).
21.
J.
Qi
,
J.
Wang
, and
K.
Sun
, “
Efficient estimation of component interactions for cascading failure analysis by em algorithm
,”
IEEE Trans. Power Syst.
33
,
3153
3161
(
2018
).
22.
N.
Shah
,
A.
Abed
,
C.
Thomas
,
J.
Seabrook
,
L.
Pereira
,
M.
Kreipe
,
S.
Mavis
, and
T.
Green
, Undervoltage Load Shedding Guidelines (Technical Studies Subcommittee of the WECC, 1999).
23.
C.
Zhan
,
C. K.
Tse
, and
M.
Small
, “
A general stochastic model for studying time evolution of transition networks
,”
Physica A
464
,
198
210
(
2016
).
24.
D. T.
Gillespie
, “
A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
,”
J. Comput. Phys.
22
,
403
434
(
1976
).
25.
D. T.
Gillespie
, “
Exact stochastic simulation of coupled chemical reactions
,”
J. Phys. Chem.
81
,
2340
2361
(
1977
).
26.
R.
Baldick
,
B.
Chowdhury
,
I.
Dobson
,
Z.
Dong
,
B.
Gou
,
D.
Hawkins
,
H.
Huang
,
M.
Joung
,
D.
Kirschen
,
F.
Li
et al.,“Initial review of methods for cascading failure analysis in electric power transmission systems IEEE PES CAMS task force on understanding, prediction, mitigation and restoration of cascading failures,” in 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century (IEEE, 2008), pp. 1–8.
27.
A.
Singh
and
B.
Pal
, “Report on the 68-bus 16-machine 5-area system, version 3.3,” IEEE PES Task Force on Benchmark Systems for Stability Controls, Technical Report, 2013.
28.
X.
Ji
,
B.
Wang
,
D.
Liu
,
Z.
Dong
,
G.
Chen
,
Z.
Zhu
,
X.
Zhu
, and
X.
Wang
, “
Will electrical cyber–physical interdependent networks undergo first-order transition under random attacks?
Physica A
460
,
235
245
(
2016
).
29.
Y.
Cai
,
Y.
Li
,
Y.
Cao
,
W.
Li
, and
X.
Zeng
, “
Modeling and impact analysis of interdependent characteristics on cascading failures in smart grids
,”
Int. J. Electric. Power Energy Syst.
89
,
106
114
(
2017
).
30.
M.
Korkali
,
J. G.
Veneman
,
B. F.
Tivnan
,
J. P.
Bagrow
, and
P. D.
Hines
, “
Reducing cascading failure risk by increasing infrastructure network interdependence
,”
Sci. Rep.
7
,
44499
(
2017
).
31.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’networks
,”
Nature
393
,
440
(
1998
).
32.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
512
(
1999
).
33.
Y.
Koç
,
M.
Warnier
,
R. E.
Kooij
, and
F. M.
Brazier
, “A robustness metric for cascading failures by targeted attacks in power networks,” in 2013 10th IEEE International Conference on Networking, Sensing and Control (ICNSC) (IEEE, 2013), pp. 48–53.
34.
X.
Yu
and
C.
Singh
, “
A practical approach for integrated power system vulnerability analysis with protection failures
,”
IEEE Trans. Power Syst.
19
,
1811
1820
(
2004
).
35.
R.
Chen
,
Y.
Yang
,
L.
Feng
,
P.
Liu
, and
L.
Zhu
, “Grid risk assessment based on cascading failure model,” in TENCON 2015-2015 IEEE Region 10 Conference (IEEE, 2015), pp. 1–5.
You do not currently have access to this content.