In this article, we propose and investigate the possibility of signature identification based on its fractal Minkowski dimension. We consider a signature as a trajectory of a pen tip that obeys the Langevin equations, for which we calculate the fractal Minkowski dimension. This parameter is different for original and intentionally falsified signatures, thus allowing one to reliably distinguish between the signatures left by different persons. The proposed approach together with machine learning techniques is a potentially powerful tool for identification and verification of signatures and any other kind of notations.

1.
B.
Cambon
,
X.
Leoncini
,
M.
Vittot
,
R.
Dumont
, and
X.
Garbet
, “
Chaotic motion of charged particles in toroidal magnetic configurations
,”
Chaos
24
,
033101
(
2014
).
2.
M.
Schroeder
,
Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise
(
Courier Corporation
,
2009
).
3.
J.-P.
Eckmann
, “
Roads to turbulence in dissipative dynamical systems
,”
Rev. Mod. Phys.
53
,
643
(
1981
).
4.
G. G.
Carlo
,
L.
Ermann
,
A. M.
Rivas
,
M. E.
Spina
, and
D.
Poletti
, “
Classical counterparts of quantum attractors in generic dissipative systems
,”
Phys. Rev. E
95
,
062202
(
2017
).
5.
J. C.
Butcher
,
The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
(
John Wiley & Sons Inc.
,
1987
).
6.
S.
Khan
and
A.
Dhole
, “
A review on offline signature recognition and verification techniques
,”
Int. J. Adv. Res. Comput. Commun. Eng.
3
,
6879
6882
(
2014
).
7.
M. K.
Kalera
,
S.
Srihari
, and
A.
Xu
, “
Offline signature verification and identification using distance statistics
,”
Int. J. Pattern Recognit. Artif. Intell.
18
,
1339
1360
(
2004
).
8.
L. G.
Hafemann
,
R.
Sabourin
, and
L. S.
Oliveira
, “Offline handwritten signature verification—Literature review,” in 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA) (IEEE, 2017), pp. 1–8.
9.
M. H.
Sigari
,
M. R.
Pourshahabi
, and
H. R.
Pourreza
, “
Offline handwritten signature identification and verification using multi-resolution Gabor wavelet
,”
Int. J. Biometrics Bioinformatics
5
,
234
248
(
2011
).
10.
P. S.
Deng
,
H.-Y. M.
Liao
,
C. W.
Ho
, and
H.-R.
Tyan
, “
Wavelet-based off-line handwritten signature verification
,”
Comput. Vis. Image Underst.
76
,
173
190
(
1999
).
11.
M. R.
Pourshahabi
,
M. H.
Sigari
, and
H. R.
Pourreza
, “Offline handwritten signature identification and verification using contourlet transform,” in International Conference of Soft Computing and Pattern Recognition (IEEE, 2009), pp. 670–673.
12.
R.
Zouari
,
R.
Mokni
, and
M.
Kherallah
, “Identification and verification system of offline handwritten signature using fractal approach,” in International Image Processing, Applications and Systems Conference (IEEE, 2014), pp. 1–4.
13.
A.
Foroozandeh
,
Y.
Akbari
,
M. J.
Jalili
, and
J.
Sadri
, “Persian signature verification based on fractal dimension using testing hypothesis,” in 2012 International Conference on Frontiers in Handwriting Recognition (IEEE, 2012), pp. 313–318.
14.
A.
Chaabouni
,
H.
Boubaker
,
M.
Kherallah
,
A. M.
Alimi
, and
H.
El Abed
, “Fractal and multi-fractal for arabic offline writer identification,” in 2010 20th International Conference on Pattern Recognition (IEEE, 2010), pp. 3793–3796.
15.
M. W.
Wong
and
H.
Zhu
,
Pseudo-Differential Operators: Groups, Geometry and Applications
(
Springer
,
2017
).
16.
E.
Doron
and
U.
Smilansky
, “
Chaotic spectroscopy
,”
Chaos
2
,
117
124
(
1992
).
17.
M.
Koszykowski
,
D.
Noid
,
M.
Tabor
, and
R.
Marcus
, “
On correlation functions and the onset of chaotic motion
,”
J. Chem. Phys.
74
,
2530
2535
(
1981
).
18.
T.
Bohr
and
J. L.
Hansen
, “
Chaotic particle motion under linear surface waves
,”
Chaos
6
,
554
563
(
1996
).
19.
R.
Meucci
,
E.
Allaria
,
F.
Salvadori
, and
F.
Arecchi
, “
Attractor selection in chaotic dynamics
,”
Phys. Rev. Lett.
95
,
184101
(
2005
).
20.
E.
Ott
, “
Strange attractors and chaotic motions of dynamical systems
,”
Rev. Mod. Phys.
53
,
655
(
1981
).
21.
U.
Feudel
,
S.
Kuznetsov
, and
A.
Pikovsky
,
Strange Nonchaotic Attractors: Dynamics Between Order and Chaos in Quasiperiodically Forced Systems (Nonlinear Science)
(
World Scientific
,
2006
).
22.
S. R.
Nayak
and
J.
Mishra
, “
An improved method to estimate the fractal dimension of colour images
,”
Perspect. Sci.
8
,
412
416
(
2016
).
23.
P. H.
Charmoy
,
Y.
Peres
, and
P.
Sousi
, “
Minkowski dimension of Brownian motion with drift
,”
J. Fractal Geometry
1
,
153
176
(
2014
).
24.
R. L.
Schilling
and
L.
Partzsch
,
Brownian Motion: An Introduction to Stochastic Processes
(
Walter de Gruyter GmbH & Co KG
,
2014
).
25.
F. L.
Ribeiro
,
R. V.
dos Santos
, and
A. S.
Mata
, “
Fractal dimension and universality in avascular tumor growth
,”
Phys. Rev. E
95
,
042406
(
2017
).
26.
M. S.
Zahedi
and
J.
Zeil
, “
Fractal dimension and the navigational information provided by natural scenes
,”
PLoS One
13
,
e0196227
(
2018
).
27.
G. R.
Richards
, “
A fractal forecasting model for financial time series
,”
J. Forecast.
23
,
586
601
(
2004
).
28.
F.
Fernández-Rodríguez
,
M.-D.
Garcia-Artiles
, and
J. M.
Martín-González
, “
A model of speculative behaviour with a strange attractor
,”
Appl. Math. Finance
9
,
143
161
(
2002
).
29.
C.
Werndl
, “
What are the new implications of chaos for unpredictability?
,”
Br. J. Philos. Sci.
60
,
195
220
(
2009
).
30.
R. d. O.
Plotze
,
M.
Falvo
,
J. G.
Pádua
,
L. C.
Bernacci
,
M. L. C.
Vieira
,
G. C. X.
Oliveira
, and
O. M.
Bruno
, “
Leaf shape analysis using the multiscale Minkowski fractal dimension, a new morphometric method: A study with Passiflora (Passifloraceae)
,”
Can. J. Bot.
83
,
287
301
(
2005
).
31.
P.
Cvitanovic
,
Universality in Chaos
(
Routledge
,
2017
).
32.
C. G.
Harris
,
M.
Stephens
et al., “A combined corner and edge detector,” in Alvey Vision Conference Proceedings (Citeseer, 1988), Vol. 15, pp. 10–5244.
33.
L.
Gueguen
and
M.
Pesaresi
, “
Multi scale Harris corner detector based on differential morphological decomposition
,”
Pattern Recognit. Lett.
32
,
1714
1719
(
2011
).
34.
E. M.
Lennon
,
G. O.
Mohler
,
H. D.
Ceniceros
,
C. J.
García-Cervera
, and
G. H.
Fredrickson
, “
Numerical solutions of the complex Langevin equations in polymer field theory
,”
Multiscale Model. Simul.
6
,
1347
1370
(
2008
).
35.
F.
Moon
and
G.-X.
Li
, “
Fractal basin boundaries and homoclinic orbits for periodic motion in a two-well potential
,”
Phys. Rev. Lett.
55
,
1439
(
1985
).
36.
G.-B.
So
,
H.-R.
So
, and
G.-G.
Jin
, “
Enhancement of the box-counting algorithm for fractal dimension estimation
,”
Pattern Recognit. Lett.
98
,
53
58
(
2017
).
37.
D. W.
Hosmer, Jr.
,
S.
Lemeshow
, and
R. X.
Sturdivant
,
Applied Logistic Regression
(
John Wiley & Sons
,
2013
), Vol. 398.
38.
D.
Pregibon
et al., “
Logistic regression diagnostics
,”
Ann. Stat.
9
,
705
724
(
1981
).
39.
L. S.
Liebovitch
and
T.
Toth
, “
A fast algorithm to determine fractal dimensions by box counting
,”
Phys. Lett. A
141
,
386
390
(
1989
).
You do not currently have access to this content.