In Hamiltonian systems, depending on the control parameter, orbits can stay for very long times around islands, the so-called stickiness effect caused by a temporary trapping mechanism. Different methods have been used to identify sticky orbits, such as recurrence analysis, recurrence time statistics, and finite-time Lyapunov exponent. However, these methods require a large number of map iterations and to know the island positions in the phase space. Here, we show how to use the small divergence of bursts in the rotation number calculation as a tool to identify stickiness without knowing the island positions. This new procedure is applied to the standard map, a map that has been used to describe the dynamic behavior of several nonlinear systems. Moreover, our procedure uses a small number of map iterations and is proper to identify the presence of stickiness phenomenon for different values of the control parameter.
Skip Nav Destination
,
,
,
,
,
Article navigation
April 2019
Research Article|
April 24 2019
Using rotation number to detect sticky orbits in Hamiltonian systems Available to Purchase
Moises S. Santos
;
Moises S. Santos
1
Departamento de Física, Universidade Federal do Paraná
, Curitiba 80060-000, PR, Brazil
2
Pós-Graduação em Ciências, Universidade Estadual de Ponta Grossa
, Ponta Grossa 84030-900, PR, Brazil
Search for other works by this author on:
Michele Mugnaine;
Michele Mugnaine
1
Departamento de Física, Universidade Federal do Paraná
, Curitiba 80060-000, PR, Brazil
2
Pós-Graduação em Ciências, Universidade Estadual de Ponta Grossa
, Ponta Grossa 84030-900, PR, Brazil
Search for other works by this author on:
José D. Szezech, Jr.
;
José D. Szezech, Jr.
3
Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa
, Ponta Grossa 84030-900, PR, Brazil
Search for other works by this author on:
Antonio M. Batista
;
Antonio M. Batista
3
Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa
, Ponta Grossa 84030-900, PR, Brazil
Search for other works by this author on:
Iberê L. Caldas
;
Iberê L. Caldas
4
Instituto de Física, Universidade de São Paulo
, São Paulo 05508-900, SP, Brazil
Search for other works by this author on:
Ricardo L. Viana
Ricardo L. Viana
1
Departamento de Física, Universidade Federal do Paraná
, Curitiba 80060-000, PR, Brazil
Search for other works by this author on:
Moises S. Santos
1,2
Michele Mugnaine
1,2
José D. Szezech, Jr.
3
Antonio M. Batista
3
Iberê L. Caldas
4
Ricardo L. Viana
1
1
Departamento de Física, Universidade Federal do Paraná
, Curitiba 80060-000, PR, Brazil
2
Pós-Graduação em Ciências, Universidade Estadual de Ponta Grossa
, Ponta Grossa 84030-900, PR, Brazil
3
Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa
, Ponta Grossa 84030-900, PR, Brazil
4
Instituto de Física, Universidade de São Paulo
, São Paulo 05508-900, SP, Brazil
Chaos 29, 043125 (2019)
Article history
Received:
October 25 2018
Accepted:
April 03 2019
Citation
Moises S. Santos, Michele Mugnaine, José D. Szezech, Antonio M. Batista, Iberê L. Caldas, Ricardo L. Viana; Using rotation number to detect sticky orbits in Hamiltonian systems. Chaos 1 April 2019; 29 (4): 043125. https://doi.org/10.1063/1.5078533
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Reservoir computing with the minimum description length principle
Antony Mizzi, Michael Small, et al.
Recent achievements in nonlinear dynamics, synchronization, and networks
Dibakar Ghosh, Norbert Marwan, et al.
Data-driven nonlinear model reduction to spectral submanifolds via oblique projection
Leonardo Bettini, Bálint Kaszás, et al.
Related Content
Stickiness and recurrence plots: An entropy-based approach
Chaos (March 2023)
Characterization of stickiness by means of recurrence
Chaos (October 2007)
An investigation of escape and scaling properties of a billiard system
Chaos (November 2024)
Stickiness in double-curl Beltrami magnetic fields
Chaos (December 2018)