Cyber-physical system (CPS) is a next-generation intelligent system integrating computing, communication, and control. As a unit of computing process and physical process, CPS is a new research field, where cooperative adaptive cruise control (CACC) is not only a microcosm of CPS but also a prerequisite for unmanned systems. CACC relies on the wireless communication network technology to achieve cooperative platooning control through vehicle-to-vehicle collaborative control methods. It can improve traffic efficiency and ensure safe driving. Once the wireless network is introduced by each vehicle to exchange information, it is vulnerable to cyber attacks, making attack detection necessary. In this paper, an integral sliding mode observer is designed to monitor malicious attacks. The proposed sliding mode observer not only retains the performance of traditional sliding mode control but also realizes the finite-time observation, avoiding the singular phenomenon that may occur in the traditional terminal sliding mode.

1.
Z.
Chen
,
J.
Wu
,
Y.
Xia
, and
X.
Zhang
, “
Robustness of interdependent power grids and communication networks: A complex network perspective
,”
IEEE Trans. Circuits Syst. II Exp. Briefs
65
,
115
119
(
2018
).
2.
H.
Tu
,
Y.
Xia
,
J.
Wu
, and
X.
Zhou
, “
Robustness assessment of cyber-physical systems with weak interdependency
,”
Physica A
522
,
9
(
2019
).
3.
J.
Wu
,
J.
Zhong
,
Z.
Chen
, and
B.
Chen
, “
Optimal coupling patterns in interconnected communication networks
,”
IEEE Trans. Circuits Syst. II Exp. Briefs
65
(
8
),
1109
1113
(
2018
).
4.
S. K.
Khaitan
and
J. D.
McCalley
, “
Design techniques and applications of cyberphysical systems: A survey
,”
IEEE Syst. J.
9
,
350
365
(
2015
).
5.
A.
Humayed
,
J.
Lin
,
F.
Li
, and
B.
Luo
, “
Cyber-physical systems security—A survey
,”
IEEE Internet Things
4
,
1802
1831
(
2017
).
6.
F.
Pasqualetti
,
F.
Dorfler
, and
F.
Bullo
, “
Attack detection and identification in cyber-physical systems
,”
IEEE Trans. Autom. Contr.
58
,
2715
2729
(
2013
).
7.
V.
Chandola
,
A.
Banerjee
, and
V.
Kumar
, “
Anomaly detection: A survey
,”
ACM Comput. Surv.
41
,
15
(
2009
).
8.
D. E.
Denning
, “
An intrusion-detection model
,”
IEEE Trans. Softw. Eng.
2
,
222
232
(
1987
).
9.
D. S.
Yeung
,
S.
Jin
, and
X.
Wang
, “
Covariance-matrix modeling and detecting various flooding attacks
,”
IEEE Trans. Syst. Man. Cybern. A
37
,
157
169
(
2007
).
10.
F.
Mizoguchi
, “Anomaly detection using visualization and machine learning,” in Proceedings of IEEE 9th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE 2000) (IEEE, 2000), pp. 165–170.
11.
K.
Ilgun
,
R. A.
Kemmerer
, and
P. A.
Porras
, “
State transition analysis: A rule-based intrusion detection approach
,”
IEEE Trans. Softw. Eng.
21
,
181
199
(
1995
).
12.
X.
Yu
and
Z.
Man
, “
Fast terminal sliding-mode control design for nonlinear dynamical systems
,”
IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
49
,
261
264
(
2002
).
13.
Y.
Feng
,
F.
Han
,
X.
Yu
,
Z.
Tari
,
L.
Li
, and
J.
Hu
, “Terminal sliding mode observer for anomaly detection in TCP/IP networks,” in
2011 International Conference on Computer Science and Network Technology (ICCSNT)
(IEEE, 2012), Vol. 1.
14.
Y.
Feng
,
F.
Han
,
X.
Yu
,
Z.
Tari
,
L.
Li
, and
J.
Hu
, “High-order terminal sliding-mode observers for anomaly detection,” in
International Conference on Intelligent Computing
(Springer, 2012), pp. 497–504.
15.
Y.
Feng
,
B.
Wang
,
F.
Han
,
X.
Yu
, and
Z.
Tari
, “Chattering-free terminal sliding-mode observer for anomaly detection,” in
Cyberspace Safety and Security
(Springer, 2012), pp. 57–65.
16.
L.
Xu
,
X.
Yu
,
Y.
Feng
,
F.
Han
,
J.
Hu
, and
Z.
Tari
, “A fast terminal sliding mode observer for TCP/IP network anomaly traffic detection,” in
2015 IEEE International Conference on IEEE Industrial Technology (ICIT)
(IEEE, 2015), pp. 28–33.
17.
Q.
Zong
,
F.
Zeng
,
W.
Liu
,
Y.
Ji
, and
Y.
Tao
, “
Sliding mode observer-based fault detection of distributed networked control systems with time delay
,”
Circuits Syst. Signal Process.
31
,
203
222
(
2012
).
18.
M.
Basin
,
P.
Yu
, and
Y.
Shtessel
, “Finite and fixed setting time differentiators utilizing non-recursive higher order sliding mode control observer,” in
2016 14th International Workshop on IEEE Variable Structure Systems (VSS)
(IEEE, 2016), pp. 188–193.
19.
H.
Sun
,
S.
Li
, and
C.
Sun
, “
Finite time integral sliding mode control of hypersonic vehicles
,”
Nonlinear Dyn.
73
,
229
244
(
2013
).
20.
Y.
Wang
,
H.
Shen
, and
H. R.
Karimi
, “
Dissipativity-based fuzzy integral sliding mode control of continuous-time TS fuzzy systems
,”
IEEE Trans. Fuzzy Syst.
26
,
1164
1176
(
2018
).
21.
J.
Li
,
Q.
Zhang
, and
X. G.
Yan
, “
Observer-based fuzzy integral sliding mode control for nonlinear descriptor systems
,”
IEEE Trans. Fuzzy Syst.
26
,
2818
2832
(
2018
).
22.
J.
Ploeg
,
E.
Semsar-Kazerooni
, and
G.
Lijster
, “Graceful degradation of CACC performance subject to unreliable wireless communication,” in
2013 16th International IEEE Conference on IEEE Intelligent Transportation Systems (ITSC)
(IEEE, 2013), pp. 1210–1216.
23.
Z. A.
Biron
,
S.
Dey
, and
P.
Pisu
, “Resilient control strategy under denial of service in connected vehicles,” in
American Control Conference (ACC)
(IEEE, 2017), pp. 4971–4976.
24.
N.
Jahanshahi
and
R. M. G.
Ferrari
, “
Attack detection and estimation in cooperative vehicles platoons: A sliding mode observer approach
,”
IFAC-Papers On Line
51
,
212
217
(
2018
).
25.
V. S.
Dolk
,
J.
Ploeg
,
W. P.
Maurice
, and
H.
Heemels
, “
Event-triggered control for string-stable vehicle platooning
,”
IEEE Trans. Intell. Transp. Syst.
18
,
3486
3500
(
2017
).
26.
Y. A.
Harfouch
,
S.
Yuan
, and
S.
Baldi
, “
An adaptive switched control approach to heterogeneous platooning with intervehicle communication losses
,”
IEEE Trans. Contr. Netw. Syst.
5
,
1434
1444
(
2018
).
27.
A.
Firooznia
,
J.
Ploeg
, and
N.
van de Wouw
, “
Co-design of controller and communication topology for vehicular platooning
,”
IEEE Trans. Intell. Transp. Syst.
18
,
2728
2739
(
2017
).
28.
H.
Hu
,
G.
Wen
,
W.
Yu
, and
Q.
Xuan
, “
Swarming behavior of multiple euler-lagrange systems with cooperation-competition interactions: An auxiliary system approach
,”
IEEE Trans. Neural Netw.
99
,
1
12
(
2018
).
29.
H.
Hu
,
W.
Yu
,
G.
Wen
, and
Q.
Xuan
, “
Reverse group consensus of multi-agent systems in the cooperation-competition network
,”
IEEE Trans. Circuits Syst. I
63
,
2036
2047
(
2016
).
30.
W.
Yu
,
H.
Wang
,
H.
Hong
, and
G.
Wen
, “
Distributed cooperative anti-disturbance control of multi-agent systems: An overview
,”
Sci. China Inf.
60
,
1869
1919
(
2017
).
31.
J. A.
Moreno
and
M.
Osorio
, “
Strict Lyapunov functions for the super-twisting algorithm
,”
IEEE Trans. Autom. Contr.
57
,
1035
1040
(
2012
).
32.
S. P.
Bhat
and
D. S.
Bernstein
, “
Finite-time stability of homogeneous systems
,”
Am. Control Conf.
4
,
2513
2514
(
1997
).
33.
S. P.
Bhat
and
D. S.
Bernstein
, “
Geometric homogeneity with applications to finite-time stability
,”
Math. Control Signal Syst.
17
,
101
127
(
2005
).
You do not currently have access to this content.