In this paper, we investigate the controllability problems for heterogeneous multiagent systems (MASs) with two-time-scale feature under fixed topology. Firstly, the heterogeneous two-time-scale MASs are modeled by singular perturbation system with a singular perturbation parameter, which distinguishes fast and slow subsystems evolving on two different time scales. Due to the ill-posedness problems caused by the singular perturbation parameter, we analyze the two-time-scale MASs via the singular perturbation method, instead of the general methods. Then, we split the heterogeneous two-time-scale MASs into slow and fast subsystems to eliminate the singular perturbation parameter. Subsequently, according to the matrix theory and the graph theory, we propose some necessary/sufficient criteria for the controllability of the heterogeneous two-time-scale MASs. Lastly, we give some simulation and numerical examples to demonstrate the effectiveness of the proposed theoretical results.

1.
X.
Xu
,
Z.
Rong
,
Z.
Wu
,
T.
Zhou
, and
C. K.
Tse
, “
Extortion provides alternative routes to the evolution of cooperation in structured populations
,”
Phys. Rev. E
95
(
5
),
052302
(
2017
).
2.
Y.
Mao
,
X.
Xu
,
Z.
Rong
, and
Z.
Wu
, “
The emergence of cooperation-extortion alliance on scale-free networks with normalized payoff
,”
Europhys. Lett.
122
(
5
),
50005
(
2018
).
3.
H.
Su
,
H.
Wu
,
X.
Chen
, and
M. Z. Q.
Chen
, “
Positive edge consensus of complex networks
,”
IEEE Trans. Syst. Man Cybern. Syst.
48
(
12
),
2242
2250
(
2018
).
4.
H.
Wu
and
H.
Su
, “
Discrete-time positive edge-consensus for undirected and directed nodal networks
,”
IEEE Trans. Circuits Syst. II Express Briefs
65
(
2
),
221
225
(
2018
).
5.
Z.
Chen
,
J.
Wu
,
Y.
Xia
, and
X.
Zhang
, “
Robustness of interdependent power grids and communication networks: A complex network perspective
,”
IEEE Trans. Circuits Syst. II Express Briefs
65
(
1
),
115
119
(
2018
).
6.
J.
Wu
,
J.
Zhong
,
Z.
Chen
, and
B.
Chen
, “
Optimal coupling patterns in interconnected communication networks
,”
IEEE Trans. Circuits Syst. II Express Briefs
65
(
8
),
1109
1113
(
2017
).
7.
H.
Su
,
H.
Wu
, and
X.
Chen
, “
Observer-based discrete-time nonnegative edge synchronization of networked systems
,”
IEEE Trans. Neural Netw. Learn. Syst.
28
(
10
),
2446
2455
(
2017
).
8.
L.
Wang
and
G.
Chen
, “
Synchronization of multi-agent systems with metric-topological interactions
,”
Chaos
26
,
094809
(
2016
).
9.
P. C.
Bressloff
and
J.
MacLaurin
, “
Synchronization of stochastic hybrid oscillators driven by a common switching environment
,”
Chaos
28
,
123123
(
2018
).
10.
X.
Wang
,
H.
Su
,
X.
Wang
, and
G.
Chen
, “
Nonnegative edge quasi-consensus of networked dynamical systems
,”
IEEE Trans. Circuits Syst. II Express Briefs
64
(
3
),
304
308
(
2017
).
11.
H.
Su
,
H.
Wu
, and
J.
Lam
, “
Positive edge-consensus for nodal networks via output feedback
,”
IEEE Trans. Automat. Contr.
64
(
3
),
1244
1249
(
2019
).
12.
X.
Wang
,
H.
Su
,
X.
Wang
, and
G.
Chen
, “
Fully distributed event-triggered semiglobal consensus of multi-agent systems with input saturation
,”
IEEE Trans. Ind. Electron.
64
(
6
),
5055
5064
(
2017
).
13.
H.
Su
,
Y.
Liu
, and
Z.
Zeng
, “
Second-order consensus for multiagent systems via intermittent sampled position data control
,”
IEEE Trans. Cybern.
(published online).
14.
J.
Qu
,
Z.
Ji
,
C.
Lin
, and
H.
Yu
, “
Fast consensus seeking on networks with antagonistic interactions
,”
Complexity
2018
,
7831317
.
15.
H.
Su
,
Y.
Ye
,
Y.
Qiu
,
Y.
Cao
, and
M. Z. Q.
Chen
, “
Semi-global output consensus for discrete-time switching networked systems subject to input saturation and external disturbances
,”
IEEE Trans. Cybern.
(
published online
).
16.
X.
Wang
and
H.
Su
, “
Self-triggered leader-following consensus of multi-agent systems with input time delay
,”
Neurocomputing
330
,
70
77
(
2019
).
17.
H.
Wu
and
H.
Su
, “
Observer-based consensus for positive multiagent systems with directed topology and nonlinear control input
,”
IEEE Trans. Syst. Man Cybern. Syst.
(
unpublished
).
18.
H.
Su
,
J.
Zhang
, and
X.
Chen
, “
A stochastic sampling mechanism for time-varying formation of multiagent systems with multiple leaders and communication delays
,”
IEEE Trans. Neural Netw. Learn. Syst.
(
unpublished
).
19.
J.
Zhang
and
H.
Su
, “
Time-varying formation for linear multi-agent systems based on sampled data with multiple leaders
,”
Neurocomputing
339
,
59
65
(
2019
).
20.
W.
Yu
,
G.
Chen
,
M.
Cao
,
J.
, and
H.
Zhang
, “
Swarming behaviors in multi-agent systems with nonlinear dynamics
,”
Chaos
23
,
043118
(
2013
).
21.
H.
Su
,
X.
Wang
, and
Z.
Lin
, “
Flocking of multi-agents with a virtual leader
,”
IEEE Trans. Automat. Contr.
54
(
2
),
293
307
(
2009
).
22.
H.
Tanner
,
“On the controllability of nearest neighbor interconnections
,”
IEEE Conf. Decis. Contr.
3
(
3
),
2467
2472
(
2004
).
23.
B.
Liu
,
T.
Chu
,
L.
Wang
, and
G.
Xie
, “
Controllability of a leader-follower dynamic network with switching topology
,”
IEEE Trans. Automat. Contr.
53
(
4
),
1009
1013
(
2008
).
24.
B.
Liu
,
H.
Feng
,
L.
Wang
,
R.
Li
,
J.
Yu
,
H.
Su
, and
G.
Xie
, “
Controllability of second-order multiagent systems with multiple leaders and general dynamics
,”
Math. Prob. Eng.
2013
,
587569
.
25.
B.
Liu
,
H.
Su
,
R.
Li
,
D.
Sun
, and
W.
Hu
, “
Switching controllability of discrete-time multi-agent systems with multiple leaders and time-delays
,”
Appl. Math. Comput.
228
(
9
),
571
588
(
2014
).
26.
B.
Liu
,
T.
Chu
,
L.
Wang
,
Z.
Zuo
,
G.
Chen
, and
H.
Su
, “
Controllability of switching networks of multi-agent systems
,”
Int. J. Robust Nonlinear Contr.
22
(
6
),
630
644
(
2012
).
27.
A.
Rahmani
,
M.
Ji
,
M.
Mesbahi
, and
M.
Egerstedt
, “
Controllability of multi-agent systems from a graph theoretic perspective
,”
SIAM J. Contr. Optim.
48
(
1
),
162
186
(
2009
).
28.
Z.
Ji
,
H.
Lin
, and
T.
Lee
, “
A graph theory based characterization of controllability for multi-agent systems with fixed topology
,”
IEEE Conf. Decis. Contr.
2008
,
5262
5267
.
29.
Z.
Ji
and
H.
Yu
, “
A new perspective to graphical characterization of multi-agent controllability
,”
IEEE Trans. Cybern.
47
(
6
),
1471
1483
(
2017
).
30.
Y.
Lou
and
Y.
Hong
, “
Controllability analysis of multi-agent systems with directed and weighted interconnection
,”
Int. J. Control
85
(
10
),
1486
1496
(
2012
).
31.
N.
O’Clery
,
Y.
Yuan
,
G. B.
Stan
, and
M.
Barahona
, “
Observability and coarse graining of consensus dynamics through the external equitable partition
,”
Phys. Rev. E
88
(
4
),
042805
(
2013
).
32.
S.
Zhang
,
M.
Cao
, and
M. K.
Camlibel
, “
Upper and lower bounds for controllable subspaces of networks of networks of diffusively coupled agents
,”
IEEE Trans. Automat. Contr.
59
(
3
),
745
750
(
2014
).
33.
G.
Parlangeli
and
G.
Notarstefano
, “
On the reachability and observability of path and cycle graphs
,”
IEEE Trans. Automat. Contr.
57
(
3
),
743
748
(
2012
).
34.
G.
Notarstefano
and
G.
Parlangeli
, “
Controllability and observability of grid graphs via reduction and symmetries
,”
IEEE Trans. Automat. Contr.
58
(
7
),
1719
1731
(
2013
).
35.
Z.
Ji
,
H.
Lin
, and
H.
Yu
, “
Leaders in multi-agent controllability under consensus algorithm and tree topology
,”
Syst. Control Lett.
61
(
9
),
918
925
(
2012
).
36.
B.
Liu
,
Y.
Han
,
F.
Jiang
,
H.
Su
, and
J.
Zou
, “
Group controllability of discrete-time multi-agent systems
,”
J. Franklin Inst.
353
(
14
),
3524
3559
(
2016
).
37.
B.
Liu
,
H.
Su
,
F.
Jiang
,
Y.
Gao
,
L.
Liu
, and
J.
Qian
, “
Group controllability of continuous-time multi-agent systems
,”
IET Control Theory Appl.
12
(
11
),
1665
1671
(
2018
).
38.
Y.
Guan
,
Z.
Ji
,
L.
Zhang
, and
L.
Wang
, “
Controllability of heterogeneous multi-agent systems under directed and weighted topology
,”
Int. J. Control
89
(
5
),
1009
1024
(
2016
).
39.
E. C.
Pillco
and
L. F.
Alberto
, “
On the foundations of stability analysis of power systems in time scales
,”
IEEE Trans. Circuits Syst. I
62
(
5
),
1230
1239
(
2015
).
40.
X.
Kan
,
C. H.
Lee
, and
H. G.
Othmer
, “
A multi-time-scale analysis of chemical reaction networks: II. Stochastic systems
,”
J. Math. Biol.
73
(
5
),
1081
1129
(
2016
).
41.
A.
Meyer-Base
,
F.
Ohl
, and
H.
Scheich
, “
Singular perturbation analysis of competitive neural networks with different time scales
,”
Neural Comput.
8
(
8
),
1731
1742
(
1996
).
42.
H. R.
Karimi
,
M. J.
Yazdanpanah
,
R. V.
Patel
, and
K.
Khorasani
, “
Modeling and control of linear two-time scale systems: applied to single-link flexible manipulator
,”
J. Intell. Robotic Syst. Theory Appl.
45
(
3
),
235
265
(
2006
).
43.
M.
Long
,
H.
Su
, and
B.
Liu
, “
Group controllability of two-time-scale multi-agent networks
,”
J. Franklin Inst.
355
(
13
),
6045
6061
(
2018
).
44.
M.
Long
,
H.
Su
, and
B.
Liu
, “
Second-order controllability of two-time-scale multi-agent systems
,”
Appl. Math. Comput.
343
,
299
313
(
2019
).
45.
H.
Su
,
M.
Long
, and
Z.
Zeng
, “
Controllability of two-time-scale discrete-time multi-agent systems
,”
IEEE Trans. Cybern.
(
published online
).
46.
W.
Yang
,
Y.
Wang
,
Z.
Guan
, and
C.
Wen
, “
Controllability of impulsive singularly perturbed systems and its application to a class of multiplex networks
,”
Nonlinear Anal. Hybrid Syst.
31
,
123
134
(
2019
).
47.
M.
Pósfai
,
J.
Gao
,
S. P.
Cornelius
,
A. L.
Barabási
, and
R. M.
D’Souza
, “
Controllability of multiplex, multi-time-scale networks
,”
Phys. Rev. E
94
(
3
),
032316
(
2016
).
48.
J.
Yu
and
L.
Wang
, “
Group consensus in multi-agent systems with switching topologies and communication delays
,”
Syst. Control Lett.
59
(
6
),
340
348
(
2010
).
49.
P. V.
Kokotovic
,
H. K.
Khalil
, and
J.
O’Reilly
,
Singular Perturbation Methods in Control Analysis and Design
(
SIAM
,
Philadephia
,
1999
).
50.
J.
Ruths
and
D.
Ruths
, “
Control profiles of complex networks
,”
Science
343
(
6177
),
1373
1376
(
2014
).
You do not currently have access to this content.