Localized oscillations can develop thanks to the interplay of reaction and diffusion processes when two reactants A and B of an oscillating reaction are placed in contact, meet by diffusion, and react. We study numerically the properties of such an A+B oscillator configuration using the Brusselator model. The influence of a hydrodynamic viscous fingering instability on localized concentration oscillations is next analyzed when the oscillating chemical reaction changes the viscosity of the solutions involved. Nonlinear simulations of the related reaction–diffusion–convection equations with the fluid viscosity varying with the concentration of an intermediate oscillatory species show an active coupling between the oscillatory kinetics and the viscously driven instability. The periodic oscillations in the concentration of the intermediate species induce localized changes in the viscosity, which in turn can affect the fingering instability. We show that the oscillating kinetics can also trigger viscous fingering in an initially viscously stable displacement, while localized changes in the viscosity profile can induce oscillations in an initially nonoscillating reactive system.

1.
A.
De Wit
,
Philos. Trans. R. Soc. A
374
,
20150419
(
2016
).
2.
R.
Kapral
and
K.
Showalter
,
Chemical Waves and Patterns
(
Springer
,
The Netherlands
,
2012
).
3.
I. R.
Epstein
and
J. A.
Pojman
,
An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos
(
Oxford University Press
,
1998
).
4.
J. A.
Pojman
,
I. R.
Epstein
,
T. J.
McManus
, and
K.
Showalter
,
J. Phys. Chem.
95
,
1299
(
1991
).
5.
J.
Masere
,
D. A.
Vasquez
,
B. F.
Edwards
,
J. W.
Wilder
, and
K.
Showalter
,
J. Phys. Chem.
98
,
6505
(
1994
).
6.
A.
De Wit
and
G. M.
Homsy
,
Phys. Fluids
11
,
949
(
1999
).
7.
L.
Gálfi
and
Z.
Rácz
,
Phys. Rev. A
38
,
3151
(
1988
).
8.
R.
Tiani
,
A.
De Wit
, and
L.
Rongy
,
Adv. Colloid Interface Sci.
225
,
76
(
2018
).
9.
T.
Podgorski
,
M. C.
Sostarecz
,
S.
Zorman
, and
A.
Belmonte
,
Phys. Rev. E
79
,
016202
(
2007
).
10.
Y.
Nagatsu
,
K.
Matsuda
,
Y.
Kato
, and
Y.
Tada
,
J. Fluid Mech.
571
,
475
(
2007
).
11.
L. A.
Riolfo
,
Y.
Nagatsu
,
S.
Iwata
,
R.
Maes
,
P. M. J.
Trevelyan
, and
A.
De Wit
,
Phys. Rev. E
85
,
015304(R)
(
2012
).
12.
T.
Gérard
and
A.
De Wit
,
Phys. Rev. E
79
,
016308
(
2009
).
13.
S. H.
Hejazi
,
P. M. J.
Trevelyan
,
J.
Azaiez
, and
A.
De Wit
,
J. Fluid Mech.
652
,
501
(
2010
).
14.
N.
Sabet
,
H.
Hassanzadeh
, and
J.
Abedi
,
Phys. Rev. E
96
,
063114
(
2017
).
15.
N.
Sabet
,
S. M.
Jafari Raad
,
H.
Hassanzadeh
, and
J.
Abedi
,
Phys. Rev. Appl.
10
,
054033
(
2018
).
16.
D. M.
Escala
,
J.
Carballido-Landeira
,
A.
De Wit
, and
A. P.
Muñuzuri
,
J. Phys. Chem. Lett.
5
,
413
(
2014
).
17.
M. A.
Budroni
,
L.
Lemaigre
,
D. M.
Escala
,
A. P.
Muñuzuri
, and
A.
De Wit
,
J. Phys. Chem. A
120
,
851
860
(
2016
).
18.
M. A.
Budroni
and
A.
De Wit
,
Chaos
27
,
104617
(
2017
).
19.
G.
Nicolis
and
I.
Prigogine
,
Self-Organization in Nonequilibrium Systems
(
Wiley
,
New York
,
1977
).
20.
A. M.
Turing
,
Philos. Trans. R. Soc. B Biol. Sci.
237
,
37
(
1952
).
21.
V.
Castets
,
E.
Dulos
,
J.
Boissonade
, and
P.
De Kepper
,
Phys. Rev. Lett.
64
,
2953
(
1990
).
22.
M. A.
Budroni
and
A.
De Wit
,
Phys. Rev. E
93
,
062207
(
2016
).
23.
B.
Dúzs
and
I.
Szalai
,
Reac. Kinet. Mech. Cat.
123
,
335
(
2018
).
24.
L.
Lemaigre
, “Convective patterns triggered by chemical reactions, dissolution and cross-diffusion: An experimental study,” Ph.D. thesis (Université libre de Bruxelles, 2016).
25.
D. M.
Escala
,
A. P.
Muñuzuri
,
A.
De Wit
, and
J.
Carballido-Landeira
,
Phys. Chem. Chem. Phys.
19
,
11914
(
2017
).
26.
D. M.
Escala
,
A.
De Wit
,
J.
Carballido-Landeira
, and
A. P.
Muñuzuri
,
Langmuir
35
(
11
),
4182
4188
(
2019
).
27.
I.
Prigogine
and
R.
Lefever
,
J. Chem. Phys.
48
,
1695
(
1968
).
28.
R.
Lefever
and
G.
Nicolis
,
J. Theor. Biol.
30
,
267
(
1971
).
29.
R.
Lefever
,
G.
Nicolis
, and
P.
Borckmans
,
J. Chem. Soc. Faraday Trans.
84
,
1013
(
1988
).
30.
I.
Prigogine
and
G.
Nicolis
,
Q. Rev. Biophys.
4
,
107
(
1971
).
31.
M.
Herschkowitz-Kaufman
and
G.
Nicolis
,
J. Chem. Phys.
56
,
1890
(
1972
).
32.
J.
Boissonade
,
J. Phys. France
49
,
541
(
1988
).
33.
G.
Dewel
and
P.
Borckmans
,
Phys. Lett. A
138
,
189
(
1989
).
34.
P.
Borckmans
,
A.
De Wit
, and
G.
Dewel
,
Physica A
188
,
137
157
(
1992
).
35.
G.
Dewel
,
P.
Borckmans
,
A.
De Wit
,
B.
Rudovics
,
J.-J.
Perraud
,
E.
Dulos
,
J.
Boissonade
, and
P.
De Kepper
,
Physica A
213
,
181
198
(
1995
).
36.
A.
De Wit
,
Y.
Bertho
, and
M.
Martin
,
Phys. Fluids
17
,
054114
(
2005
).
37.
M.
Mishra
,
M.
Martin
, and
A.
De Wit
,
Phys. Rev. E
78
,
066306
(
2008
).
38.
D.
Gottlieb
and
S. A.
Orszag
,
Numerical Analysis of Spectral Methods
(
Society for Industrial and Applied Mathematics
,
1989
).
39.
C. T.
Tan
and
G. M.
Homsy
,
Phys. Fluids
31
,
1330
(
1988
).
40.
A.
De Wit
,
Phys. Fluids
16
,
163
(
2004
).
You do not currently have access to this content.