It has been demonstrated that the construction of ordinal partition transition networks (OPTNs) from time series provides a prospective approach to improve our understanding of the underlying dynamical system. In this work, we introduce a suite of OPTN based complexity measures to infer the coupling direction between two dynamical systems from pairs of time series. For several examples of coupled stochastic processes, we demonstrate that our approach is able to successfully identify interaction delays of both unidirectional and bidirectional coupling configurations. Moreover, we show that the causal interaction between two coupled chaotic Hénon maps can be captured by the OPTN based complexity measures for a broad range of coupling strengths before the onset of synchronization. Finally, we apply our method to two real-world observational climate time series, disclosing the interaction delays underlying the temperature records from two distinct stations in Oxford and Vienna. Our results suggest that ordinal partition transition networks can be used as complementary tools for causal inference tasks and provide insights into the potentials and theoretical foundations of time series networks.

1.
E.
Bradley
and
H.
Kantz
, “
Nonlinear time-series analysis revisited
,”
Chaos
25
,
097610
(
2015
); e-print arXiv:1503.07493.
2.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2004
).
3.
Y.
Zou
,
R. V.
Donner
,
N.
Marwan
,
J. F.
Donges
, and
J.
Kurths
, “
Complex network approaches to nonlinear time series analysis
,”
Phys. Rep.
787
,
1
97
(
2019
).
4.
N.
Marwan
,
J. F.
Donges
,
Y.
Zou
,
R. V.
Donner
, and
J.
Kurths
, “
Complex network approach for recurrence analysis of time series
,”
Phys. Lett. A
373
,
4246
4254
(
2009
); e-print arXiv:0907.3368.
5.
R. V.
Donner
,
Y.
Zou
,
J. F.
Donges
,
N.
Marwan
, and
J.
Kurths
, “
Recurrence networks—A novel paradigm for nonlinear time series analysis
,”
New J. Phys.
12
,
033025
(
2010
).
6.
L.
Lacasa
,
B.
Luque
,
F.
Ballesteros
,
J.
Luque
, and
J. C.
Nuno
, “
From time series to complex networks: The visibility graph
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
4972
4975
(
2008
); e-print arXiv:0810.0920.
7.
G.
Nicolis
,
A. G.
Cantu
, and
C.
Nicolis
, “
Dynamical aspects of interaction networks
,”
Int. J. Bifurc. Chaos
15
,
3467
3480
(
2005
).
8.
M.
McCullough
,
M.
Small
,
T.
Stemler
, and
H. H.-H.
Iu
, “
Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems
,”
Chaos
25
,
053101
(
2015
); e-print arXiv:1501.06656v1.
9.
J.
Zhang
and
M.
Small
, “
Complex network from pseudoperiodic time series: Topology versus dynamics
,”
Phys. Rev. Lett.
96
,
238701
(
2006
).
10.
J. F.
Donges
,
R. V.
Donner
,
M. H.
Trauth
,
N.
Marwan
,
H. J.
Schellnhuber
, and
J.
Kurths
, “
Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
20422
20427
(
2011
).
11.
J. B.
Elsner
,
T. H.
Jagger
, and
E. A.
Fogarty
, “
Visibility network of United States hurricanes
,”
Geophys. Res. Lett.
36
,
L16702
(
2009
).
12.
C.-F.
Schleussner
,
D. V.
Divine
,
J. F.
Donges
,
A.
Miettinen
, and
R. V.
Donner
, “
Indications for a North Atlantic ocean circulation regime shift at the onset of the Little Ice Age
,”
Clim. Dyn.
45
,
3623
3633
(
2015
).
13.
C.
Liu
,
W.-X.
Zhou
, and
W.-K.
Yuan
, “
Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence
,”
Physica A
389
,
2675
2681
(
2010
).
14.
G.
Górski
,
G.
Litak
,
R.
Mosdorf
, and
A.
Rysak
, “
Two phase flow bifurcation due to turbulence: Transition from slugs to bubbles
,”
Eur. Phys. J. B
88
,
239
(
2015
).
15.
Z.-K.
Gao
,
Y.-X.
Yang
,
P.-C.
Fang
,
Y.
Zou
,
C.-Y.
Xia
, and
M.
Du
, “
Multiscale complex network for analyzing experimental multivariate time series
,”
EPL (Europhys. Lett.)
109
,
30005
(
2015
).
16.
Z.-K.
Gao
,
Y.-X.
Yang
,
Q.
Cai
,
S.-S.
Zhang
, and
N.-D.
Jin
, “
Multivariate weighted recurrence network inference for uncovering oil-water transitional flow behavior in a vertical pipe
,”
Chaos
26
,
063117
(
2016
).
17.
P.
Manshour
,
M. R.
Rahimi Tabar
, and
J.
Peinke
, “
Fully developed turbulence in the view of horizontal visibility graphs
,”
J. Stat. Mech. Theory Exp.
2015
,
P08031
(
2015
).
18.
G. M.
Ramírez Ávila
,
A.
Gapelyuk
,
N.
Marwan
,
H.
Stepan
,
J.
Kurths
,
T.
Walther
, and
N.
Wessel
, “
Classifying healthy women and preeclamptic patients from cardiovascular data using recurrence and complex network methods
,”
Auton. Neurosci. Basic Clin.
178
,
103
110
(
2013
).
19.
N. P.
Subramaniyam
,
J. F.
Donges
, and
J.
Hyttinen
, “
Signatures of chaotic and stochastic dynamics uncovered with ϵ-recurrence networks
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
471
,
20150349
(
2015
).
20.
R.
Flanagan
and
L.
Lacasa
, “
Irreversibility of financial time series: A graph-theoretical approach
,”
Phys. Lett. A
380
,
1689
1697
(
2016
); e-print arXiv:1601.01980.
21.
Y.
Zou
,
M.
Small
,
Z. H.
Liu
, and
J.
Kurths
, “
Complex network approach to characterize the statistical features of the sunspot series
,”
New J. Phys.
16
,
013051
(
2014
).
22.
Y.
Zou
,
R. V.
Donner
,
N.
Marwan
,
M.
Small
, and
J.
Kurths
, “
Long-term changes in the north-south asymmetry of solar activity: A nonlinear dynamics characterization using visibility graphs
,”
Nonlinear Process. Geophys.
21
,
1113
1126
(
2014
).
23.
J.
Schnakenberg
, “
Network theory of microscopic and macroscopic behavior of master equation systems
,”
Rev. Mod. Phys.
48
,
571
585
(
1976
).
24.
C. W.
Kulp
,
J. M.
Chobot
,
H. R.
Freitas
, and
G. D.
Sprechini
, “
Using ordinal partition transition networks to analyze ECG data
,”
Chaos
26
,
073114
(
2016
).
25.
C. W.
Kulp
,
J. M.
Chobot
,
B. J.
Niskala
, and
C. J.
Needhammer
, “
Using forbidden ordinal patterns to detect determinism in irregularly sampled time series
,”
Chaos
26
,
023107
(
2016
).
26.
M.
McCullough
,
K.
Sakellariou
,
T.
Stemler
, and
M.
Small
, “
Counting forbidden patterns in irregularly sampled time series. I. The effects of under-sampling, random depletion, and timing jitter
,”
Chaos
26
,
123103
(
2016
).
27.
K.
Sakellariou
,
M.
McCullough
,
T.
Stemler
, and
M.
Small
, “
Counting forbidden patterns in irregularly sampled time series. II. Reliability in the presence of highly irregular sampling
,”
Chaos
26
,
123104
(
2016
).
28.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
,
174102
(
2002
).
29.
C. S.
Daw
,
C. E. A.
Finney
, and
E. R.
Tracy
, “
A review of symbolic analysis of experimental data
,”
Rev. Sci. Instrum.
74
,
915
930
(
2003
).
30.
J. M.
Finn
,
J. D.
Goettee
,
Z.
Toroczkai
,
M.
Anghel
, and
B. P.
Wood
, “
Estimation of entropies and dimensions by nonlinear symbolic time series analysis
,”
Chaos
13
,
444
456
(
2003
).
31.
J.
Amigó
,
Permutation Complexity in Dynamical Systems
(
Spinger
,
Berlin/Heidelberg
,
2010
).
32.
M.
McCullough
,
M.
Small
,
H. H. C.
Iu
, and
T.
Stemler
, “
Multiscale ordinal network analysis of human cardiac dynamics
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
375
,
20160292
(
2017
).
33.
J. H.
Martínez
,
J. L.
Herrera-Diestra
, and
M.
Chavez
, “
Detection of time reversibility in time series by ordinal patterns analysis
,”
Chaos
28
,
123111
(
2018
).
34.
J. Y.
Zhang
,
J.
Zhou
,
M.
Tang
,
H.
Guo
,
M.
Small
, and
Y.
Zou
, “
Constructing ordinal partition transition networks from multivariate time series
,”
Sci. Rep.
7
,
7795
(
2017
).
35.
H.
Guo
,
J.-Y.
Zhang
,
Y.
Zou
, and
S.-G.
Guan
, “
Cross and joint ordinal partition transition networks for multivariate time series analysis
,”
Front. Phys.
13
,
130508
(
2018
).
36.
D.
Coufal
,
J.
Jakubík
,
N.
Jajcay
,
J.
Hlinka
,
A.
Krakovská
, and
M.
Paluš
, “
Detection of coupling delay: A problem not yet solved
,”
Chaos
27
,
083109
(
2017
).
37.
C. W. J.
Granger
, “
Investigating causal relations by econometric models and cross-spectral methods
,”
Econometrica
37
,
424
438
(
1969
).
38.
M. Z.
Ding
,
Y. H.
Chen
, and
S. L.
Bressler
, “Granger causality: Basic theory and application to neuroscience,” in Handbook of Time Series Analysis, edited by B. Schelter, M. Winterhalder, and J. Timmer (Wiley-VCH Verlag GmbH & Co. KGaA, 2007), pp. 437–460.
39.
M.
Dhamala
,
G.
Rangarajan
, and
M. Z.
Ding
, “
Estimating Granger causality from Fourier and wavelet transforms of time series data
,”
Phys. Rev. Lett.
100
,
018701
(
2008
).
40.
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics, edited by D. Rand and L.-S. Young (Springer, New York, 1981), Vol. 898, pp. 366–381.
41.
S. T.
Li
,
Y. Y.
Xiao
,
D.
Zhou
, and
D.
Cai
, “
Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information
,”
Phys. Rev. E
97
,
052216
(
2018
).
42.
X.
Li
and
G.
Ouyang
, “
Estimating coupling direction between neuronal populations with permutation conditional mutual information
,”
NeuroImage
52
,
497
507
(
2010
).
43.
T.
Schreiber
, “
Measuring information transfer
,”
Phys. Rev. Lett.
85
,
461
464
(
2000
).
44.
M.
Staniek
and
K.
Lehnertz
, “
Symbolic transfer entropy
,”
Phys. Rev. Lett.
100
,
158101
(
2008
).
45.
M. C.
Romano
,
M.
Thiel
,
J.
Kurths
, and
C.
Grebogi
, “
Estimation of the direction of the coupling by conditional probabilities of recurrence
,”
Phys. Rev. E
76
,
036211
(
2007
).
46.
D.
Rybski
,
S.
Havlin
, and
A.
Bunde
, “
Phase synchronization in temperature and precipitation records
,”
Physica A
320
,
601
610
(
2003
).
47.
A.
Hannachi
,
T.
Woollings
, and
K.
Fraedrich
, “
The North Atlantic jet stream: A look at preferred positions, paths and transitions
,”
Quart. J. R. Meteorol. Soc.
138
,
862
877
(
2012
).
48.
P.
Esteban
,
J.
Martin-Vide
, and
M.
Mases
, “
Daily atmospheric circulation catalogue for western Europe using multivariate techniques
,”
Int. J. Climatol.
26
,
1501
1515
(
2006
).
49.
E.
Koscielny-Bunde
,
H. E.
Roman
,
A.
Bunde
,
S.
Havlin
, and
H.
Schellnhuber
, “
Long-range power-law correlations in local daily temperature fluctuations
,”
Philos. Mag. B
77
,
1331
1340
(
1998
).

Supplementary Material

You do not currently have access to this content.