Chimera states are spatiotemporal patterns in which coherence and incoherence coexist. We observe the coexistence of synchronous (coherent) and desynchronous (incoherent) domains in a neuronal network. The network is composed of coupled adaptive exponential integrate-and-fire neurons that are connected by means of chemical synapses. In our neuronal network, the chimera states exhibit spatial structures both with spike and burst activities. Furthermore, those desynchronized domains not only have either spike or burst activity, but we show that the structures switch between spikes and bursts as the time evolves. Moreover, we verify the existence of multicluster chimera states.
REFERENCES
1.
I.
Omelchenko
, Y.
Maistrenko
, P.
Hövel
, and E.
Schöll
, “Loss of coherence in dynamical networks: Spatial chaos and chimera states
,” Phys. Rev. Lett.
106
, 234102
(2011
). 2.
M.
Wildie
and M.
Shanahan
, “Metastability and chimera states in modular delay and pulse-coupled oscillator networks
,” Chaos
22
, 043131
(2012
). 3.
D. K.
Umberger
, C.
Grebogi
, E.
Ott
, and B.
Afeyan
, “Spatiotemporal dynamics in a dispersively coupled chain of nonlinear oscillators
,” Phys. Rev. A
39
, 4835
–4842
(1989
). 4.
Y.
Kuramoto
and D.
Battogtokh
, “Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,” Nonlin. Phenom. Complex Syst.
5
, 380
–385
(2002
).5.
D. M.
Abrams
and S. H.
Strogatz
, “Chimera states for coupled oscillators
,” Phys. Rev. Lett.
93
, 174102
(2004
). 6.
J. D.
Hart
, K.
Bansal
, T. E.
Murphy
, and R.
Roy
, “Experimental observation of chimera and cluster states in a minimal globally coupled network
,” Chaos
26
, 094801
(2016
). 7.
E. A.
Martens
, S.
Thutupalli
, A.
Fourriére
, and O.
Hallatschek
, “Chimera states in mechanical oscillator networks
,” Proc. Natl. Acad. Sci.
110
, 10563
–10567
(2013
). 8.
T.
Kapitaniak
, P.
Kuzma
, J.
Wojewoda
, K.
Czolczynski
, and Y.
Maistrenko
, “Imperfect chimera states for coupled pendula
,” Sci. Rep.
4
, 6379
(2014
). 9.
M.
Wickramasinghe
and I. Z.
Kiss
, “Spatially organized partial synchronization through the chimera mechanism in a network of electrochemical reactions
,” Phys. Chem. Chem. Phys.
16
, 18360
–18369
(2014
). 10.
M. R.
Tinsley
, S.
Nkomo
, and K.
Showalter
, “Chimera and phase-cluster states in populations of coupled chemical oscillators
,” Nat. Phys.
8
, 662
–665
(2012
). 11.
S.
Nkomo
, M. R.
Tinsley
, and K.
Showalter
, “Chimera states in populations of nonlocally coupled chemical oscillators
,” Phys. Rev. Lett.
110
, 244102
(2013
). 12.
J. F.
Totz
, J.
Rode
, M. R.
Tinsley
, K.
Showalter
, and H.
Engel
, “Spiral wave chimera states in large populations of coupled chemical oscillators
,” Nat. Phys.
14
, 282
–285
(2018
). 13.
O. E.
Omel’chenko
, Y. L.
Maistrenko
, and P. A.
Tass
, “Chimera states: The natural link between coherence and incoherence
,” Phys. Rev. Lett.
100
, 044105
(2008
). 14.
M. S.
Santos
, J. D.
Szezech, Jr
, A. M.
Batista
, I. L.
Caldas
, R. L.
Viana
, and S. R.
Lopes
, “Recurrence quantification analysis of chimera states
,” Phys. Lett. A
379
, 2188
–2192
(2015
). 15.
V.
Santos
, J. D.
Szezech, Jr
, A. M.
Batista
, K. C.
Iarosz
, M. S.
Baptista
, H. P.
Ren
, C.
Grebogi
, R. L.
Viana
, I. L.
Caldas
, Y. L.
Maistrenko
, and J.
Kurths
, “Ridding: Chimera’s dilemma
,” Chaos
28
, 081105
(2018
). 16.
J.
Hizanidis
, V. G.
Kanas
, A.
Bezerianos
, and T.
Bountis
, “Chimera states in networks of nonlocally coupled Hindmarsh-Rose neuron models
,” Int. J. Bifurcation Chaos
24
, 1450030
(2014
). 17.
B. K.
Bera
, D.
Ghosh
, and M.
Lakshmanan
, “Chimera states in bursting neurons
,” Phys. Rev. E
93
, 012205
(2016
). 18.
I.
Omelchenko
, A.
Provata
, J.
Hizanidis
, E.
Schöll
, and P.
Hövel
, “Robustness of chimera states for coupled FitzHugh-Nagumo oscillators
,” Phys. Rev. E
91
, 022917
(2015
). 19.
T.
Chouzouris
, I.
Omelchenko
, A.
Zakharova
, J.
Hlinka
, P.
Jiruska
, and E.
Schöll
, “Chimera states in brain networks: Empirical neural vs. modular fractal connectivity
,” Chaos
28
, 045112
(2018
). 20.
H.
Sakaguchi
, “Instability of synchronized motion in nonlocally coupled neural oscillators
,” Phys. Rev. E
73
, 031907
(2006
). 21.
T. A.
Glaze
, S.
Lewis
, and S.
Bahar
, “Chimera states in a Hodgkin-Huxley model of thermally sensitive neurons
,” Chaos
26
, 083119
(2016
). 22.
C. R.
Laing
and C. C.
Chow
, “Stationary bumps in networks of spiking neurons
,” Neural Comput.
13
, 1473
–1494
(2001
). 23.
N. D.
Tsigkri-DeSmedt
, J.
Hizanidis
, E.
Schöll
, P.
Hövel
, and A.
Provata
, “Chimeras in leaky integrate-and-fire neural networks: Effects of reflecting connectivities
,” Eur. Phys. J. B
90
, 139
(2017
). 24.
C. R.
Laing
, “Bumps in small-world networks
,” Front. Comput. Neurosci.
10
, 53
(2016
). 25.
A.
Rothkegel
and K.
Lehnertz
, “Irregular macroscopic dynamics due to chimera states in small-world networks of pulsed-coupled oscillators
,” New J. Phys.
16
, 055006
(2014
). 26.
A.
Rothkegel
and K.
Lehnertz
, “Recurrent events of synchrony in complex networks of pulse-coupled oscillators
,” Europhys. Lett.
95
, 38001
(2011
). 27.
J.
Hizanidis
, N. E.
Kouvaris
, G.
Zamora-López
, C. A.
Díaz-Guilera
, G.
Antonopoulos
, “Chimera-like states in modular neural networks
,” Sci. Rep.
6
, 19845
(2016
). 28.
H.-P.
Ren
, C.
Bai
, M. S.
Baptista
, and C.
Grebogi
, “Weak connection forms an infinite number of patterns in the brain
,” Sci. Rep.
7
, 46472
(2017
). 29.
M. S.
Santos
, J. D.
Szezech
, F. S.
Borges
, K. C.
Iarosz
, I. L.
Caldas
, A. M.
Batista
, R. L.
Viana
, and J.
Kurths
, “Chimera-like states in a neuronal network model of the cat brain
,” Chaos Soliton. Fract.
101
, 86
–91
(2017
). 30.
R. G.
Andrzejak
, C.
Rummel
, F.
Mormann
, and K.
Schindler
, “All together now: Analogies between chimera state collapses and epileptic seizures
,” Sci. Rep.
6
, 23000
(2016
). 31.
F. S.
Borges
, P. R.
Protachevicz
, E. L.
Lameu
, R. C.
Bonetti
, K. C.
Iarosz
, I. L.
Caldas
, M. S.
Baptista
, and A. M.
Batista
, “Synchronised firing patterns in a random network of adaptive exponential integrate-and-fire neuron model
,” Neural Netw.
90
, 1
–7
(2017
). 32.
R.
Brette
and W.
Gerstner
, “Adaptive exponential integrate-and-fire model as an effective description of neuronal activity
,” J. Neurophysiol.
94
, 3637
–3642
(2005
). 33.
N.
Yao
, Z.-G.
Huang
, C.
Grebogi
, and Y.-C.
Lai
, “Emergence of multicluster chimera states
,” Sci. Rep.
5
, 12988
(2015
). 34.
R.
Naud
, N.
Marcille
, C.
Clopath
, and W.
Gerstner
, “Firing patterns in the adaptive exponential integrate-and-fire model
,” Biol. Cybern.
99
, 335
–347
(2008
). 35.
P. R.
Protachevicz
, R. R.
Borges
, A. S.
Reis
, F. S.
Borges
, K. C.
Iarosz
, I. L.
Caldas
, E. L.
Lameu
, E. E. N.
Macau
, R. L.
Viana
, I. M.
Sokolov
, F. A. S.
Ferrari
, J.
Kurths
, A. M.
Batista
, C.-Y.
Lo
, Y.
He
, and C.-P.
Lin
, “Synchronous behaviour in network model based on human cortico-cortical connections
,” Physiol. Meas.
39
, 074006
(2018
). 36.
Y.
Kuramoto
, Chemical Oscillations, Waves, and Turbulence
(Springer-Verlag
, Berlin
, 1984
).37.
C.
Beurrier
, P.
Congar
, B.
Bioulac
, and C.
Hammond
, “Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode
,” J. Neurosci.
19
, 599
–609
(1999
). 38.
I.
Omelchenko
, O. E.
Omel’chenko
, P.
Hövel
, and E.
Schöll
, “When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states
,” Phys. Rev. Lett.
110
, 224101
(2013
). © 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.