The evolution of a cooperative strategy on multilayer networks is arousing increasing concern. Most of the previous studies assumed that agents can only choose cooperation or defection when interacting with their partners, whereas the actual provisions in real world scenarios might not be discrete, but rather continuous. Furthermore, in evolutionary game, agents often make use of their memory which keeps the most successful strategy in the past, as well as the best current strategy gained by their directed neighbors, to find the best available strategies. Inspired by these observations, we study the impact of the particle swarm optimization (PSO) algorithm on the evolution of cooperation on interdependent networks in the continuous version of spatial prisoner’s dilemma games. Following extensive simulations of this setup, we can observe that the introduction of the PSO mechanism on the interdependent networks can promote cooperation strongly, regardless of the network coupling strength. In addition, we find that the increment of coupling strength is more suitable for the propagation of cooperation. More interestingly, we find that when the coupling strength is relatively large, a spontaneous symmetry breaking phenomenon of cooperation occurs between the interdependent networks. To interpret the symmetry breaking phenomenon, we investigate the asynchronous expansion of heterogeneous strategy couples between different networks. Since this work takes cooperation from a more elaborate perspective, we believe that it may provide a deep understanding of the evolution of cooperation in social networks.

1.
M.
Perc
,
J. J.
Jordan
,
D. G.
Rand
,
Z.
Wang
,
S.
Boccaletti
, and
A.
Szolnoki
, “
Statistical physics of human cooperation
,”
Phys. Rep.
687
,
1
51
(
2017
).
2.
M.
Perc
and
A.
Szolnoki
, “
Social diversity and promotion of cooperation in the spatial prisoner’s dilemma game
,”
Phys. Rev. E
77
(
1
),
011904
(
2008
).
3.
R.
Axelrod
and
W. D.
Hamilton
, “
The evolution of cooperation
,”
Science
211
(
4489
),
1390
1396
(
1981
).
4.
C.
Darwin
,
On the Origin of Species, 1859
(
Routledge
,
2004
).
5.
M. A.
Nowak
, “
Five rules for the evolution of cooperation
,”
Science
314
(
5805
),
1560
1563
(
2006
).
6.
M.
Perc
and
A.
Szolnoki
, “
Coevolutionary games: A mini review
,”
Biosystems
99
(
2
),
109
125
(
2009
).
7.
M.
Perc
, “
Evolution of cooperation on scale-free networks subject to error and attack
,”
New J. Phys.
11
(
3
),
033027
(
2009
).
8.
K.
Huang
,
Y.
Liu
,
Y.
Zhang
,
C.
Yang
, and
Z.
Wang
, “
Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks
,”
Physica A
509
,
234
240
(
2018
).
9.
Z.
Wang
,
M. A.
Andrews
,
Z.-X.
Wu
,
L.
Wang
,
C. T.
Bauch
, “
Coupled disease–behavior dynamics on complex networks: A review
,”
Phys. Life Rev.
15
,
1
29
(
2015
).
10.
L.
Wang
and
J. T.
Wu
, “
Characterizing the dynamics underlying global spread of epidemics
,”
Nat. Commun.
9
(
1
),
218
(
2018
).
11.
S. V.
Buldyrev
,
R.
Parshani
,
G.
Paul
,
H. E.
Stanley
, and
S.
Havlin
, “
Catastrophic cascade of failures in interdependent networks
,”
Nature
464
(
7291
),
1025
(
2010
).
12.
R.
Parshani
,
C.
Rozenblat
,
D.
Ietri
,
C.
Ducruet
, and
S.
Havlin
, “
Inter-similarity between coupled networks
,”
Europhys. Lett.
92
(
6
),
68002
(
2011
).
13.
J.
Gao
,
S. V.
Buldyrev
,
H. E.
Stanley
, and
S.
Havlin
, “
Networks formed from interdependent networks
,”
Nat. Phys.
8
(
1
),
40
48
(
2012
).
14.
Z.
Wang
,
L.
Wang
,
A.
Szolnoki
,
M.
Perc
, “
Evolutionary games on multilayer networks: A colloquium
,”
Eur. Phys. J. B
88
(
5
),
124
(
2015
).
15.
K.
Huang
,
Y.
Cheng
,
X.
Zheng
, and
Y.
Yang
, “
Cooperative behavior evolution of small groups on interconnected networks
,”
Chaos Solitons Fractals
80
,
90
95
(
2015
).
16.
M.
De Domenico
,
A.
Solé-Ribalta
,
S.
Gómez
, and
A.
Arenas
, “
Navigability of interconnected networks under random failures
,”
Proc. Natl. Acad. Sci.
111
(
23
),
8351
8356
(
2014
).
17.
H.-J.
Li
and
L.
Wang
, “
Multi-scale asynchronous belief percolation model on multiplex networks
,”
New J. Phys.
21
(
1
),
015005
(
2019
).
18.
A.
Solé-Ribalta
,
S.
Gómez
, and
A.
Arenas
, “
Congestion induced by the structure of multiplex networks
,”
Phys. Rev. Lett.
116
(
10
),
108701
(
2016
).
19.
S.
Boccaletti
,
G.
Bianconi
,
R.
Criado
,
C. I.
Del Genio
,
J.
Gómez-Gardenes
,
M.
Romance
,
I.
Sendina-Nadal
,
Z.
Wang
, and
M.
Zanin
, “
The structure and dynamics of multilayer networks
,”
Phys. Rep.
544
(
1
),
1
122
(
2014
).
20.
C.
Xia
,
X.
Li
,
Z.
Wang
, and
M.
Perc
, “
Doubly effects of information sharing on interdependent network reciprocity
,”
New J. Phys.
20
(
7
),
075005
(
2018
).
21.
J.
Tanimoto
,
Fundamentals of Evolutionary Game Theory and Its Applications
(
Springer
,
2015
).
22.
J.
Tanimoto
, “Past and future: Evolutionary game theory,” in Evolutionary Games with Sociophysics (Springer, 2018), pp. 217–219.
23.
X.
Meng
,
S.
Sun
,
X.
Li
,
L.
Wang
,
C.
Xia
, and
J.
Sun
, “
Interdependency enriches the spatial reciprocity in prisoner’s dilemma game on weighted networks
,”
Physica A
442
,
388
396
(
2016
).
24.
Z.
Wang
,
A.
Szolnoki
, and
M.
Perc
, “
Self-organization towards optimally interdependent networks by means of coevolution
,”
New J. Phys.
16
(
3
),
033041
(
2014
).
25.
L.-L.
Jiang
,
W.-J.
Li
, and
Z.
Wang
, “
Multiple effect of social influence on cooperation in interdependent network games
,”
Sci. Rep.
5
,
14657
(
2015
).
26.
C.
Wang
,
L.
Wang
,
J.
Wang
,
S.
Sun
, and
C.
Xia
, “
Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices
,”
Appl. Math. Comput.
293
,
18
29
(
2017
).
27.
J.
Gómez-Gardenes
,
I.
Reinares
,
A.
Arenas
, and
L. M.
Floría
, “
Evolution of cooperation in multiplex networks
,”
Sci. Rep.
2
,
620
(
2012
).
28.
Z.
Wang
,
L.
Wang
, and
M.
Perc
, “
Degree mixing in multilayer networks impedes the evolution of cooperation
,”
Phys. Rev. E
89
(
5
),
052813
(
2014
).
29.
C.
Xia
,
Q.
Miao
,
J.
Wang
, and
S.
Ding
, “
Evolution of cooperation in the traveler’s dilemma game on two coupled lattices
,”
Appl. Math. Comput.
246
,
389
398
(
2014
).
30.
X.
Chen
,
A.
Szolnoki
, and
M.
Perc
, “
Competition and cooperation among different punishing strategies in the spatial public goods game
,”
Phys. Rev. E
92
(
1
),
012819
(
2015
).
31.
H.
Ohtsuki
,
C.
Hauert
,
E.
Lieberman
, and
M. A.
Nowak
, “
A simple rule for the evolution of cooperation on graphs and social networks
,”
Nature
441
(
7092
),
502
(
2006
).
32.
H. H.
Nax
and
M.
Perc
, “
Directional learning and the provisioning of public goods
,”
Sci. Rep.
5
,
8010
(
2015
).
33.
M.
Nowak
and
K.
Sigmund
, “
A strategy of win-stay, lose-shift that outperforms tit-for-tat in the prisoner’s dilemma game
,”
Nature
364
(
6432
),
56
(
1993
).
34.
J.
Du
,
B.
Wu
,
P. M.
Altrock
, and
L.
Wang
, “
Aspiration dynamics of multi-player games in finite populations
,”
J. R. Soc. Interface
11
(
94
),
20140077
(
2014
).
35.
T. W.
Sandholm
and
R. H.
Crites
, “
Multiagent reinforcement learning in the iterated prisoner’s dilemma
,”
Biosystems
37
(
1–2
),
147
166
(
1996
).
36.
M. A.
Javarone
, “
Solving optimization problems by the public goods game
,”
Eur. Phys. J. B
90
(
9
),
171
(
2017
).
37.
S.
Kokubo
,
Z.
Wang
, and
J.
Tanimoto
, “
Spatial reciprocity for discrete, continuous and mixed strategy setups
,”
Appl. Math. Comput.
259
,
552
568
(
2015
).
38.
J.
Tanimoto
, “
Coevolution of discrete, mixed, and continuous strategy systems boosts in the spatial prisoner’s dilemma and chicken games
,”
Appl. Math. Comput.
304
,
20
27
(
2017
).
39.
X.
Li
and
X.
Yao
, “
Cooperatively coevolving particle swarms for large scale optimization
,”
IEEE Trans. Evol. Comput.
16
(
2
),
210
224
(
2012
).
40.
E.
Bonabeau
,
M.
Dorigo
, and
G.
Theraulaz
,
Swarm Intelligence: From Natural to Artificial Systems, No. 1
(
Oxford University Press
,
1999
).
41.
Z.
Wang
,
S.
Kokubo
,
M.
Jusup
, and
J.
Tanimoto
, “
Universal scaling for the dilemma strength in evolutionary games
,”
Phys. Life Rev.
14
,
1
30
(
2015
).
42.
H.
Ito
and
J.
Tanimoto
, “
Scaling the phase-planes of social dilemma strengths shows game-class changes in the five rules governing the evolution of cooperation
,”
R. Soc. Open Sci.
5
(
10
),
181085
(
2018
).
43.
M. A.
Nowak
and
R. M.
May
, “
Evolutionary games and spatial chaos
,”
Nature
359
(
6398
),
826
(
1992
).
44.
J.
Wang
,
C. Y.
Xia
,
Y. L.
Wang
,
S.
Ding
, and
J. Q.
Sun
, “
Spatial prisoner’s dilemma games with increasing size of the interaction neighborhood on regular lattices
,”
Sci. Bull.
57
(
7
),
724
728
(
2012
).
45.
Z.
Wang
,
L.
Wang
,
Z.-Y.
Yin
, and
C.-Y.
Xia
, “
Inferring reputation promotes the evolution of cooperation in spatial social dilemma games
,”
PLoS One
7
(
7
),
e40218
(
2012
).
46.
J.
Zhang
,
C.
Zhang
,
T.
Chu
, and
M.
Perc
, “
Resolution of the stochastic strategy spatial prisoner’s dilemma by means of particle swarm optimization
,”
PLoS One
6
(
7
),
e21787
(
2011
).
47.
X.-K.
Meng
,
C.-Y.
Xia
,
Z.-K.
Gao
,
L.
Wang
, and
S.-W.
Sun
, “
Spatial prisoner’s dilemma games with increasing neighborhood size and individual diversity on two interdependent lattices
,”
Phys. Lett. A
379
(
8
),
767
773
(
2015
).
48.
G.
Szabó
,
A.
Szolnoki
,
M.
Varga
, and
L.
Hanusovszky
, “
Ordering in spatial evolutionary games for pairwise collective strategy updates
,”
Phys. Rev. E
82
(
2
),
026110
(
2010
).
49.
H.
Ohtsuki
,
M. A.
Nowak
, and
J. M.
Pacheco
, “
Breaking the symmetry between interaction and replacement in evolutionary dynamics on graphs
,”
Phys. Rev. Lett.
98
(
10
),
108106
(
2007
).
50.
S.
Ducci
,
P. L.
Ramazza
,
W.
González-Viñas
,
F.
Arecchi
, “
Order parameter fragmentation after a symmetry-breaking transition
,”
Phys. Rev. Lett.
83
(
25
),
5210
(
1999
).
51.
J.
Tanimoto
, “
Differences in dynamics between discrete strategies and continuous strategies in a multi-player game with a linear payoff structure
,”
BioSystems
90
(
2
),
568
572
(
2007
).
52.
Z.
Wang
,
S.
Kokubo
,
J.
Tanimoto
,
E.
Fukuda
, and
K.
Shigaki
, “
Insight into the so-called spatial reciprocity
,”
Phys. Rev. E
88
(
4
),
042145
(
2013
).
53.
Q.
Jin
,
L.
Wang
,
C.-Y.
Xia
, and
Z.
Wang
, “
Spontaneous symmetry breaking in interdependent networked game
,”
Sci. Rep.
4
,
4095
(
2014
).
You do not currently have access to this content.