Markov-chain models are constructed for the probabilistic description of the drift of marine debris from Malaysian Airlines flight MH370. En route from Kuala Lumpur to Beijing, MH370 mysteriously disappeared in the southeastern Indian Ocean on 8 March 2014, somewhere along the arc of the 7th ping ring around the Inmarsat-3F1 satellite position when the airplane lost contact. The models are obtained by discretizing the motion of undrogued satellite-tracked surface drifting buoys from the global historical data bank. A spectral analysis, Bayesian estimation, and the computation of most probable paths between the Inmarsat arc and confirmed airplane debris beaching sites are shown to constrain the crash site, near 25°S on the Inmarsat arc.

1.
C.
Ashton
,
A. S.
Bruce
,
G.
Colledge
, and
M.
Dickinson
, “
The search for MH370
,”
J. Navigation
68
,
1
22
(
2015
).
2.
I. D.
Holland
, “
MH370 burst frequency offset analysis and implications on descent rate at end of flight
,”
IEEE Aerospace Electron. Syst. Mag.
33
,
24
33
(
2018
).
3.
Australian Transport Safety Bureau “Assistance to Malaysian Ministry of Transport in support of missing Malaysia Airlines flight MH370 on 7 March 2014 UTC,” Investigation No. AE-2014-054 (2018).
4.
V. J.
García-Garrido
,
A. M.
Mancho
,
S.
Wiggins
, and
C.
Mendoza
, “
A dynamical systems approach to the surface search for debris associated with the disappearance of flight MH370
,”
Nonlinear Process. Geophys.
22
,
701
712
(
2015
).
5.
R.
Corrado
,
G.
Lacorata
,
L.
Palatella
,
R.
Santoleri
, and
E.
Zambianchi
, “
General characteristics of relative dispersion in the ocean
,”
Sci. Rep.
7
,
46291
(
2017
).
6.
J. A.
Trinanes
,
M. J.
Olascoaga
,
G. J.
Goni
,
N. A.
Maximenko
,
D. A.
Griffin
, and
J.
Hafner
, “
Analysis of flight MH370 potential debris trajectories using ocean observations and numerical model results
,”
J. Oper. Oceanogr.
9
,
126
138
(
2016
).
7.
O.
Nesterov
, “
Consideration of various aspects in a drift study of MH370 debris
,”
Ocean Sci.
14
,
387
402
(
2018
).
8.
D.
Griffin
,
P.
Oke
, and
E.
Jones
, “The search for MH370 and ocean surface drift—Part II, 13 April 2017,” CSIRO Oceans and Atmosphere, Australia, Report No. EP172633, prepared for the Australian Transport Safety Bureau, 2017, see https://www.atsb. gov.au.
9.
N.
Maximenko
,
J.
Hafner
,
J.
Speidel
, and
K. L.
Wang
, “IPRC ocean drift model simulates MH370 crash site and flow paths,” University of Hawaii, 4 August 2015, see http://iprc.soest.hawaii.edu/news/MH370_debris/IPRC_MH370_News.php.
10.
M.
van Ormondt
and
F.
Baart
, “Aircraft debris MH370 makes Northern part of the search area more likely,” Deltares News, 31 July 2015, see https://www.deltares.nl/en/news/aircraft-debris-mh370-makes-northern-part-of-the-search.
11.
E.
Jansen
,
G.
Coppin
, and
N.
Pinardi
, “
Drift simulation of MH370 debris using superensemble techniques
,”
Nat. Hazards Earth Syst. Sci.
16
,
1623
1628
(
2016
).
12.
J.
Durgadoo
and
A.
Biastoch
, “Where is MH370?” GEOMAR Helmholtz Centre for Ocean Research Kiel, 28 August 2015, see http://www.geomar.de.
13.
S.
Davey
,
N.
Gordon
,
I.
Holland
,
M.
Rutten
, and
J.
Williams
, Bayesian Methods in the Search for MH370, SpringerBriefs in Electrical and Computer Engineering (Springer Open, 2016), p. 114.
14.
P.
de Deckker
, “Chemical investigations on barnacles found attached to debris from the MH370 aircraft found in the Indian Ocean,” Appendix F in ATSB report: “The Operational Search for MH370,” AE-2014-054, 3 October 2017, see http://www.atsb.gov.au, accessed 3 October 2017.
15.
A.
Lasota
and
M. C.
Mackey
, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, 2nd ed., Applied Mathematical Sciences Vol. 97 (Springer, 1994).
16.
P.
Brémaud
, Markov Chains, Gibbs Fields Monte Carlo Simulation Queues, Texts in Applied Mathematics Vol. 31 (Springer, 1999).
17.
J.
Norris
,
Markov Chains
(
Cambridge University Press
,
1998
).
18.
F. J.
Beron-Vera
,
M. J.
Olascoaga
,
G.
Haller
,
M.
Farazmand
,
J.
Triñanes
, and
Y.
Wang
, “
Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean
,”
Chaos
25
,
087412
(
2015
).
19.
F. J.
Beron-Vera
,
M. J.
Olascoaga
, and
R.
Lumpkin
, “
Inertia-induced accumulation of flotsam in the subtropical gyres
,”
Geophys. Res. Lett.
43
,
12228
12233
(
2016
).
20.
S. M.
Ulam
, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics (Interscience, 1960).
21.
Z.
Kovács
and
T.
Tél
, “
Scaling in multifractals: Discretization of an eigenvalue problem
,”
Phys. Rev. A
40
,
4641
4646
(
1989
).
22.
P.
Koltai
, “Efficient approximation methods for the global long-term behavior of dynamical systems–Theory, algorithms and examples,” Ph.D. thesis, Technische Universität München, Zentrum Mathematik (2010).
23.
P.
Miron
,
F. J.
Beron-Vera
,
M. J.
Olascoaga
,
G.
Froyland
,
P.
Pérez-Brunius
, and
J.
Sheinbaum
, “
Lagrangian geography of the deep Gulf of Mexico
,”
J. Phys. Oceanogr.
49
,
269
290
(
2019
).
24.
F. A.
Schott
and
J. P.
McCreary, Jr.
, “
The monsoon circulation of the Indian Ocean
,”
Prog. Oceanogr.
51
,
1
123
(
2001
).
25.
R.
Lumpkin
and
M.
Pazos
, “Measuring surface currents with surface velocity program drifters: The instrument, its data and some recent results,” in Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, edited by A. Griffa, A. D. Kirwan, A. Mariano, T. Özgökmen, and T. Rossby (Cambridge University Press, 2007), Chap. 2, pp. 39–67.
26.
P. P.
Niiler
and
J. D.
Paduan
, “
Wind-driven motions in the northeastern Pacific as measured by Lagrangian drifters
,”
J. Phys. Oceanogr.
25
,
2819
2830
(
1995
).
27.
R.
Lumpkin
,
S. A.
Grodsky
,
L.
Centurioni
,
M.-H.
Rio
,
J. A.
Carton
, and
D.
Lee
, “
Removing spurious low-frequency variability in drifter velocities
,”
J. Atmos. Ocean Technol.
30
,
353
360
(
2012
).
28.
P.
Miron
,
F. J.
Beron-Vera
,
M. J.
Olascoaga
,
J.
Sheinbaum
,
P.
Pérez-Brunius
, and
G.
Froyland
, “
Lagrangian dynamical geography of the Gulf of Mexico
,”
Sci. Rep.
7
,
7021
(
2017
).
29.
M. J.
Olascoaga
,
P.
Miron
,
C.
Paris
,
P.
Pérez-Brunius
,
R.
Pérez-Portela
,
R. H.
Smith
, and
A.
Vaz
, “
Connectivity of Pulley Ridge with remote locations as inferred from satellite-tracked drifter trajectories
,”
J. Geophys. Res.
123
,
5742
5750
(
2018
).
30.
G.
Froyland
and
K.
Padberg
, “
Almost-invariant sets and invariant manifolds—connecting probabilistic and geometric descriptions of coherent structures in flows
,”
Physica D
238
,
1507
1523
(
2009
).
31.
J. H.
LaCasce
, “
Statistics from Lagrangian observations
,”
Progr. Oceanogr.
77
,
1
29
(
2008
).
32.
A. N.
Maximenko
,
J.
Hafner
, and
P.
Niiler
, “
Pathways of marine debris derived from trajectories of Lagrangian drifters
,”
Mar. Pollut. Bull.
65
,
51
62
(
2012
).
33.
R.
McAdam
and
E.
van Sebille
, “
Surface connectivity and interocean exchanges from drifter-based transition matrices
,”
J. Geophys. Res.
123
,
514
532
(
2018
).
34.
E.
van Sebille
,
E. H.
England
, and
G.
Froyland
, “
Origin, dynamics and evolution of ocean garbage patches from observed surface drifters
,”
Environ. Res. Lett.
7
,
044040
(
2012
).
35.
G.
Froyland
,
R. M.
Stuart
, and
E.
van Sebille
, “
How well-connected is the surface of the global ocean?
Chaos
24
,
033126
(
2014
).
36.
C. S.
Hsu
, Cell-to-Cell Mapping. A Method of Global Analysis for Nonlinear Systems, Applied Mathematical Sciences Vol. 64 (Springer-Verlag, 1987), p. 354.
37.
M.
Dellnitz
and
O.
Junge
, “
On the approximation of complicated dynamical behavior
,”
SIAM J. Numer. Anal.
36
,
491
515
(
1999
).
38.
G.
Froyland
, “
Statistically optimal almost-invariant sets
,”
Physica D
200
,
205
219
(
2005
).
39.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
1990
).
40.
P.
Koltai
, “A stochastic approach for computing the domain of attraction without trajectory simulation,” in 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Supplement (American Institute of Mathematical Sciences, 2011) Vol. 2, pp. 854–863.
41.
L. M.
Beal
,
W. P. M.
de Ruijter
,
A.
Biastoch
,
R.
Zahn
, and
SCOR/WCRP/IAPSO Working Group 136
, “
On the role of the Agulhas system in ocean circulation and climate
,”
Nature
472
,
429
436
(
2011
).
42.
W. M.
Bolstad
and
J. M.
Curran
,
Introduction to Bayesian Statistics
(
John Wiley & Sons
,
2016
).
43.
E. W.
Dijkstra
, “
A note on two problems in connexion with graphs
,”
Numer. Math.
1
,
269
271
(
1959
).
44.
R. W.
Floyd
, “
Algorithm 97: Shortest path
,”
Commun. ACM
5
,
345
(
1962
).
45.
E.
Ser-Giacomi
,
R.
Vasile
,
E.
Hernández-García
, and
C.
López
, “
Most probable paths in temporal weighted networks: An application to ocean transport
,”
Phys. Rev. E
92
,
012818
(
2015
).
46.
Australian Transport Safety Bureau, see http://www.atsb.gov.au for Mh370—Definition of underwater search areas, accessed 26 June 2014.
47.
J. H. E.
Cartwright
,
U.
Feudel
,
G.
Károlyi
,
A.
de Moura
,
O.
Piro
, and
T.
Tél
, “Dynamics of finite-size particles in chaotic fluid flows,” in Nonlinear Dynamics and Chaos: Advances and Perspectives, edited by M. Thiel et al. (Springer-Verlag, Berlin, 2010), pp. 51–87.
48.
A. C.
Bagtzoglou
and
J.
Atmadja
, “Mathematical methods for hydrologic inversion: The case of pollution source identification,” in Water Pollution: Environmental Impact Assessment of Recycled Wastes on Surface and Ground Waters; Engineering Modeling and Sustainability, edited by T. A. Kassim (Springer, Berlin, 2005), pp. 65–96.
49.
M. J.
Olascoaga
,
F. J.
Beron-Vera
,
L. E.
Brand
, and
H.
Koçak
, “
Tracing the early development of harmful algal blooms on the West Florida Shelf with the aid of Lagrangian coherent structures
,”
J. Geophys. Res.
113
,
C12014
(
2008
).
50.
B. G.
Gautama
,
G.
Mercier
,
R.
Fablet
, and
N.
Longepe
, “Lagrangian-based Backtracking of Oil Spill Dynamics from SAR Images: Application to Montara Case,” in Living Planet Symposium, ESA Special Publication, Vol. 740 (European Space Agency, 2016), p. 214.
51.
F.
Hourdin
and
O.
Talagrand
, “
Eulerian backtracking of atmospheric tracers. I: Adjoint derivation and parametrization of subgrid-scale transport
,”
Q. J. R. Meteorol. Soc.
132
,
567
583
(
2006
).
52.
K. S.
Rao
, “
Source estimation methods for atmospheric dispersion
,”
Atmos. Environ.
41
,
6964
6973
(
2007
).

Supplementary Material

You do not currently have access to this content.