Random number generation is a fundamental technology behind information security. Recently, physical random number generators (RNGs), which especially harness optical chaos such as in delay-feedback lasers, have been studied intensively. Although these are promising technologies for future information security, there is little theoretical foundation. In this paper, we newly introduce a mathematical formulation of physical RNGs based on a model of chaotic dynamics and give the first rigorous results. In particular, by combining ergodic theory, information theory, and response theory of statistical physics, our theory guarantees, for the model of chaotic dynamics, the coexistence of two crucial properties necessary for physical RNGs: fast random number generation and robustness. Compared with other types of physical RNGs, our theoretical findings highlight an unnoticed advantage of chaotic dynamics utilized for physical RNGs.

1.
M.
Inubushi
,
K.
Yoshimura
,
K.
Arai
, and
P.
Davis
, “
Physical random bit generators and their reliability: Focusing on chaotic laser systems
,”
Nonlinear Theory Appl. IEICE
6
,
133
143
(
2015
).
2.
A.
Uchida
,
K.
Amano
,
M.
Inoue
,
K.
Hirano
,
S.
Naito
,
H.
Someya
,
I.
Oowada
,
T.
Kurashige
,
M.
Shiki
,
S.
Yoshimori
,
K.
Yoshimura
, and
P.
Davis
, “
Fast physical random bit generation with chaotic semiconductor lasers
,”
Nat. Photonics
2
,
728
732
(
2008
).
3.
T. E.
Murphy
and
R.
Roy
, “
The world’s fastest dice
,”
Nat. Photonics
2
,
714
715
(
2008
).
4.
S.
Wolfram
,
A New Kind of Science
(
Wolfram Media
,
2002
).
5.
T.
Harayama
,
S.
Sunada
,
K.
Yoshimura
,
J.
Muramatsu
,
K. I.
Arai
,
A.
Uchida
, and
P.
Davis
, “
Theory of fast nondeterministic physical random-bit generation with chaotic lasers
,”
Phys. Rev. E
85
,
046215
(
2012
).
6.
M.
Sciamanna
and
K. A.
Shore
, “
Physics and applications of laser diode chaos
,”
Nat. Photonics
9
,
151
162
(
2015
).
7.
K.
Ugajin
,
Y.
Terashima
,
K.
Iwakawa
,
A.
Uchida
,
T.
Harayama
,
K.
Yoshimura
, and
M.
Inubushi
, “
Real-time fast physical random number generator with a photonic integrated circuit
,”
Opt. Express
25
(
6
),
6511
6523
(
2017
).
8.
A. K. D.
Bosco
,
N.
Sato
,
Y.
Terashima
,
S.
Ohara
,
A.
Uchida
,
T.
Harayama
, and
M.
Inubushi
, “
Random number generation from intermittent optical chaos
,”
IEEE J. Sel. Top. Q. Electron.
23
,
6
(
2017
).
9.
L.
Zhang
,
B.
Pan
,
G.
Chen
,
L.
Guo
,
D.
Lu
,
L.
Zhao
, and
W.
Wang
, “
640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser
,”
Sci. Rep.
7
,
1
8
(
2017
).
10.
M.
Inubushi
,
K.
Yoshimura
, and
P.
Davis
, “
Noise robustness of unpredictability in a chaotic laser system: Toward reliable physical random bit generation
,”
Phys. Rev. E
91
,
022918
(
2015
).
11.
V.
Lucarini
, “
Response operators for Markov processes in a finite state space: Radius of convergence and link to the response theory for axiom a systems
,”
J. Stat. Phys.
162
,
312
333
(
2016
).
12.
A. Y.
Mitrophanov
, “
Sensitivity and convergence of uniformly ergodic Markov chains
,”
J. Appl. Probab.
42
,
1003
1014
(
2005
).
13.
M. D.
Chekroun
,
J. D.
Neelin
,
D.
Kondrashov
,
J. C.
McWilliams
, and
M.
Ghil
, “
Rough parameter dependence in climate models and the role of Ruelle-Pollicott resonances
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
1684
1690
(
2014
).
14.
G.
Froyland
, “
Approximating physical invariant measures of mixing dynamical systems in higher dimensions
,”
Nonlinear Anal. Theory Meth. Appl.
32
,
831
860
(
1998
).
15.
P.
Collet
and
J.-P.
Eckmann
,
Concepts and Results in Chaotic Dynamics: A Short Course
(
Springer
,
2006
).
16.
A.
Lasota
and
M. C.
Mackey
,
Probabilistic Properties of Deterministic Systems
(
Cambridge University Press
,
1985
).
17.
D.
Ruelle
, “
A review of linear response theory for general differentiable dynamical systems
,”
Nonlinearity
22
,
855
870
(
2009
).
18.
V.
Lucarini
,
D.
Faranda
,
J.
Wouters
, and
T.
Kuna
, “
Towards a general theory of extremes for observables of chaotic dynamical systems
,”
J. Stat. Phys.
154
,
723
750
(
2014
).
19.
V.
Baladi
,
T.
Kuna
, and
V.
Lucarini
, “
Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables
,”
Nonlinearity
30
,
1204
1220
(
2017
).

Supplementary Material

You do not currently have access to this content.