Centrality is one of the most fundamental metrics in network science. Despite an abundance of methods for measuring centrality of individual vertices, there are by now only a few metrics to measure centrality of individual edges. We modify various, widely used centrality concepts for vertices to those for edges, in order to find which edges in a network are important between other pairs of vertices. Focusing on the importance of edges, we propose an edge-centrality-based network decomposition technique to identify a hierarchy of sets of edges, where each set is associated with a different level of importance. We evaluate the efficiency of our methods using various paradigmatic network models and apply the novel concepts to identify important edges and important sets of edges in a commonly used benchmark model in social network analysis, as well as in evolving epileptic brain networks.

1.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
2.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
).
3.
E.
Bullmore
and
O.
Sporns
, “
Complex brain networks: Graph theoretical analysis of structural and functional systems
,”
Nat. Rev. Neurosci.
10
,
186
198
(
2009
).
4.
J. F.
Donges
,
Y.
Zou
,
N.
Marwan
, and
J.
Kurths
, “
The backbone of the climate network
,”
Europhys. Lett.
87
,
48007
(
2009
).
5.
R. J.
Allen
and
T. C.
Elston
, “
From physics to pharmacology?
,”
Rep. Prog. Phys.
74
,
016601
(
2011
).
6.
M.
Barthélemy
, “
Spatial networks
,”
Phys. Rep.
499
,
1
101
(
2011
).
7.
A.-L.
Barabási
,
N.
Gulbahce
, and
J.
Loscalzo
, “
Network medicine: A network-based approach to human disease
,”
Nat. Rev. Genet.
12
,
56
68
(
2011
).
8.
M. E. J.
Newman
, “
Communities, modules and large-scale structure in networks
,”
Nat. Phys.
8
,
25
31
(
2012
).
9.
A.
Baronchelli
,
R. F. i.
Cancho
,
R.
Pastor-Satorras
,
N.
Chater
, and
M. H.
Christiansen
, “
Networks in cognitive science
,”
Trends Cogn. Sci.
17
,
348
360
(
2013
).
10.
K.
Lehnertz
,
G.
Ansmann
,
S.
Bialonski
,
H.
Dickten
,
C.
Geier
, and
S.
Porz
, “
Evolving networks in the human epileptic brain
,”
Physica D
267
,
7
15
(
2014
).
11.
T.
Heckmann
,
W.
Schwanghart
, and
J. D.
Phillips
, “
Graph theory—recent developments of its application in geomorphology
,”
Geomorphology
243
,
130
146
(
2015
).
12.
Z.-K.
Gao
,
M.
Small
, and
J.
Kurths
, “
Complex network analysis of time series
,”
Europhys. Lett.
116
,
50001
(
2016
).
13.
P.
Holme
and
J.
Saramäki
, “
Temporal networks
,”
Phys. Rep.
519
,
97
125
(
2012
).
14.
I.
Belykh
,
M.
di Bernardo
,
J.
Kurths
, and
M.
Porfiri
, “
Evolving dynamical networks
,”
Physica D
267
,
1
6
(
2014
).
15.
M.
Kivelä
,
A.
Arenas
,
M.
Barthelemy
,
J. P.
Gleeson
,
Y.
Moreno
, and
M. A.
Porter
, “
Multilayer networks
,”
J. Complex Netw.
2
,
203
271
(
2014
).
16.
S.
Fortunato
and
D.
Hric
, “
Community detection in networks: A user guide
,”
Phys. Rep.
659
,
1
44
(
2016
).
17.
U.
Alon
, “
Network motifs: Theory and experimental approaches
,”
Nat. Rev. Gen.
8
,
450
461
(
2007
).
18.
A.
Fornito
,
A.
Zalesky
, and
M.
Breakspear
, “
The connectomics of brain disorders
,”
Nat. Rev. Neurosci.
16
,
159
172
(
2015
).
19.
M. P.
Rombach
,
M. A.
Porter
,
J. H.
Fowler
, and
P. J.
Mucha
, “
Core-periphery structure in networks
,”
SIAM J. Appl. Math.
74
,
167
190
(
2014
).
20.
L.
,
D.
Chen
,
X.-L.
Ren
,
Q.-M.
Zhang
,
Y.-C.
Zhang
, and
T.
Zho
, “
Vital nodes identification in complex networks
,”
Phys. Rep.
650
,
1
63
(
2016
).
21.
S.
Havlin
,
D. Y.
Kenett
,
A.
Bashan
,
J.
Gao
, and
H. E.
Stanley
, “
Vulnerability of network of networks
,”
Eur. Phys. J.
223
,
2087
2106
(
2014
).
22.
S.
Bialonski
,
G.
Ansmann
, and
H.
Kantz
, “
Data-driven prediction and prevention of extreme events in a spatially extended excitable system
,”
Phys. Rev. E
92
,
042910
(
2015
).
23.
Y.-Y.
Liu
and
A.-L.
Barabási
, “
Control principles of complex systems
,”
Rev. Mod. Phys.
88
,
035006
(
2016
).
24.
A. J.
Gates
and
L. M.
Rocha
, “
Control of complex networks requires both structure and dynamics
,”
Sci. Rep.
6
,
24456
(
2016
).
25.
K.
Lehnertz
,
H.
Dickten
,
S.
Porz
,
C.
Helmstaedter
, and
C. E.
Elger
, “
Predictability of uncontrollable multifocal seizures—towards new treatment options
,”
Sci. Rep.
6
,
24584
(
2016
).
26.
M.-T.
Kuhnert
,
C.
Geier
,
C. E.
Elger
, and
K.
Lehnertz
, “
Identifying important nodes in weighted functional brain networks: A comparison of different centrality approaches
,”
Chaos
22
,
023142
(
2012
).
27.
A.
Spitz
and
E.-A.
Horvát
, “
Measuring long-term impact based on network centrality: Unraveling cinematic citations
,”
PLoS One
9
,
e108857
(
2014
).
28.
K.
Almgren
and
J.
Lee
, “
An empirical comparison of influence measurements for social network analysis
,”
Soc. Netw. Anal. Min.
6
,
52
(
2016
).
29.
C.
Geier
and
K.
Lehnertz
, “
Long-term variability of importance of brain regions in evolving epileptic brain networks
,”
Chaos
27
,
043112
(
2017
).
30.
M. S.
Granovetter
, “
The strength of weak ties
,”
Am. J. Sociol.
78
,
1360
1380
(
1973
).
31.
M.
Girvan
and
M. E. J.
Newman
, “
Community structure in social and biological networks
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
7821
7826
(
2002
).
32.
X.-Q.
Cheng
,
F.-X.
Ren
,
H.-W.
Shen
,
Z.-K.
Zhang
, and
T.
Zhou
, “
Bridgeness: A local index on edge significance in maintaining global connectivity
,”
J. Stat. Mech. Theor. Exp.
2010
,
P10011
.
33.
J.-J.
Slotine
and
Y.-Y.
Liu
, “
Complex networks: The missing link
,”
Nat. Phys.
8
,
512
513
(
2012
).
34.
H.
Liao
,
M. S.
Mariani
,
M.
Medo
,
Y.-C.
Zhang
, and
M.-Y.
Zhou
, “
Ranking in evolving complex networks
,”
Phys. Rep.
689
,
1
54
(
2017
).
35.
L. C.
Freeman
, “
Centrality in social networks: Conceptual clarification
,”
Soc. Netw.
1
,
215
239
(
1979
).
36.
M. E. J.
Newman
, “
Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality
,”
Phys. Rev. E
64
,
016132
(
2001
).
37.
A.
Barrat
,
M.
Barthélemy
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “
The architecture of complex weighted networks
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
3747
3752
(
2004
).
38.
H.
Wang
,
J. M.
Hernandez
, and
P.
Van Mieghem
, “
Betweenness centrality in a weighted network
,”
Phys. Rev. E
77
,
046105
(
2008
).
39.
T.
Opsahl
,
F.
Agneessens
, and
J.
Skvoretz
, “
Node centrality in weighted networks: Generalizing degree and shortest paths
,”
Soc. Netw.
32
,
245
251
(
2010
).
40.
L. C.
Freeman
, “
A set of measures of centrality based on betweenness
,”
Sociometry
40
,
35
41
(
1977
).
41.
M.
Kitsak
,
L. K.
Gallos
,
S.
Havlin
,
F.
Liljeros
,
L.
Muchnik
,
H. E.
Stanley
, and
H. A.
Makse
, “
Identification of influential spreaders in complex networks
,”
Nat. Phys.
6
,
888
893
(
2010
).
42.
A.
Garas
,
F.
Schweitzer
, and
S.
Havlin
, “
A k-shell decomposition method for weighted networks
,”
New J. Phys.
14
,
083030
(
2012
).
43.
M.
Eidsaa
and
E.
Almaas
, “
s-core network decomposition: A generalization of k-core analysis to weighted networks
,”
Phys. Rev. E
88
,
062819
(
2013
).
44.
M.
Eidsaa
and
E.
Almaas
, “
Investigating the relationship between k-core and s-core network decompositions
,”
Physica A
449
,
111
125
(
2016
).
45.
S.
Fortunato
, “
Community detection in graphs
,”
Phys. Rep.
486
,
75
174
(
2010
).
46.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
442
(
1998
).
47.
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
97
(
2002
).
48.
P.
Erdős
and
A.
Rényi
, “
On random graphs I
,”
Publ. Math. Debrecen
6
,
290
297
(
1959
).
49.
V.
Batagelj
and
U.
Brandes
, “
Efficient generation of large random networks
,”
Phys. Rev. E
71
,
036113
(
2005
).
50.
J. M.
Bolland
, “
Sorting out centrality: An analysis of the performance of four centrality models in real and simulated networks
,”
Soc. Netw.
10
,
233
253
(
1988
).
51.
K.
Stephenson
and
M.
Zelen
, “
Rethinking centrality: Methods and examples
,”
Soc. Netw.
11
,
1
37
(
1989
).
52.
K.
Nakao
, “
Distribution of measures of centrality: Enumerated distributions of Freeman’s graph centrality measures
,”
Connections
13
,
10
22
(
1990
).
53.
R. B.
Rothenberg
,
J. J.
Potterat
,
D. E.
Woodhouse
,
W. W.
Darrow
,
S. Q.
Muth
, and
A. S.
Klovdahl
, “
Choosing a centrality measure: Epidemiologic correlates in the Colorado Springs study of social networks
,”
Soc. Netw.
17
,
273
297
(
1995
).
54.
S. P.
Borgatti
, “
Centrality and network flow
,”
Soc. Netw.
27
,
55
71
(
2005
).
55.
M. E. J.
Newman
, “
A measure of betweenness centrality based on random walks
,”
Soc. Netw.
27
,
39
54
(
2005
).
56.
P.
Manimaran
,
S. R.
Hegde
, and
S. C.
Mande
, “
Prediction of conditional gene essentiality through graph theoretical analysis of genome-wide functional linkages
,”
Mol. BioSyst.
5
,
1936
1942
(
2009
).
57.
T. W.
Valente
,
K.
Coronges
,
C.
Lakon
, and
E.
Costenbader
, “
How correlated are network centrality measures?
,”
Connections
28
,
16
26
(
2008
).
58.
T.-P.
Nguyen
,
M.
Scotti
,
M. J.
Morine
, and
C.
Priam
, “
Model-based clustering reveals vitamin D dependent multi-centrality hubs in a network of vitamin-related proteins
,”
BMC Syst. Biol.
5
,
195
(
2011
).
59.
H.
Wang
,
W.
Winterbach
, and
P.
van Mieghem
, “
Assortativity of complementary graphs
,”
Eur. Phys. J. B
83
,
203
214
(
2011
).
60.
W. W.
Zachary
, “
An information flow model for conflict and fission in small groups
,”
J. Anthropol. Res.
33
,
452
473
(
1977
).
61.
C.
Geier
,
S.
Bialonski
,
C. E.
Elger
, and
K.
Lehnertz
, “
How important is the seizure onset zone for seizure dynamics?
,”
Seizure
25
,
160
166
(
2015
).
62.
M. G.
Everett
and
S. P.
Borgatti
, “
Analyzing clique overlap
,”
Connections
21
,
49
61
(
1998
).
63.
K.
Batool
and
M. A.
Niazi
, “
Towards a methodology for validation of centrality measures in complex networks
,”
PLoS One
9
,
e90283
(
2014
).
64.
X.
Qi
,
E.
Fuller
,
R.
Luo
, and
C.-Q.
Zhang
, “
A novel centrality method for weighted networks based on the Kirchhoff polynomial
,”
Pattern Recognit. Lett.
58
,
51
60
(
2015
).
65.
T.
Qiao
,
W.
Shan
, and
C.
Zhou
, “
How to identify the most powerful node in complex networks? A novel entropy centrality approach
,”
Entropy
19
,
614
(
2017
).
66.
K.
Schindler
,
H.
Leung
,
C. E.
Elger
, and
K.
Lehnertz
, “
Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG
,”
Brain
130
,
65
77
(
2007
).
67.
K.
Schindler
,
S.
Bialonski
,
M.-T.
Horstmann
,
C. E.
Elger
, and
K.
Lehnertz
, “
Evolving functional network properties and synchronizability during human epileptic seizures
,”
Chaos
18
,
033119
(
2008
).
68.
S.
Bialonski
,
M.
Wendler
, and
K.
Lehnertz
, “
Unraveling spurious properties of interaction networks with tailored random networks
,”
PLoS One
6
,
e22826
(
2011
).
69.
C.
Geier
and
K.
Lehnertz
, “
Which brain regions are important for seizure dynamics in epileptic networks? Influence of link identification and EEG recording montage on node centralities
,”
Int. J. Neural Syst.
27
,
1650033
(
2017
).
70.
K.
Stahn
and
K.
Lehnertz
, “
Surrogate-assisted identification of influences of network construction on evolving weighted functional networks
,”
Chaos
27
,
123106
(
2017
).
71.
H. P.
Zaveri
,
S. M.
Pincus
,
I. I.
Goncharova
,
R. B.
Duckrow
,
D. D.
Spencer
, and
S. S.
Spencer
, “
Localization-related epilepsy exhibits significant connectivity away from the seizure-onset area
,”
NeuroReport
20
,
891
895
(
2009
).
72.
C.
Warren
,
S.
Hu
,
M.
Stead
,
B. H.
Brinkmann
,
M. R.
Bower
, and
G. A.
Worrell
, “
Synchrony in normal and focal epileptic brain: The seizure onset zone is functionally disconnected
,”
J. Neurophysiol.
104
,
3530
3539
(
2010
).
73.
C.
Wilke
,
G.
Worrell
, and
B.
He
, “
Graph analysis of epileptogenic networks in human partial epilepsy
,”
Epilepsia
52
,
84
93
(
2011
).
74.
G.
Varotto
,
L.
Tassi
,
S.
Franceschetti
,
R.
Spreafico
, and
F.
Panzica
, “
Epileptogenic networks of type II focal cortical dysplasia: A stereo-EEG study
,”
NeuroImage
61
,
591
598
(
2012
).
75.
F.
Zubler
,
H.
Gast
,
E.
Abela
,
C.
Rummel
,
M.
Hauf
,
R.
Wiest
,
C.
Pollo
, and
K.
Schindler
, “
Detecting functional hubs of ictogenic networks
,”
Brain Topogr.
28
,
305
317
(
2015
).
76.
M.
Goodfellow
,
C.
Rummel
,
E.
Abela
,
M. P.
Richardson
,
K.
Schindler
, and
J. R.
Terry
, “
Estimation of brain network ictogenicity predicts outcome from epilepsy surgery
,”
Sci. Rep.
6
,
29215
(
2016
).
77.
A. N.
Khambhati
,
K. A.
Davis
,
T. H.
Lucas
,
B.
Litt
, and
D. S.
Bassett
, “
Virtual cortical resection reveals push-pull network control preceding seizure evolution
,”
Neuron
91
,
1170
1182
(
2016
).
78.
Y.-H.
Li
,
X.-L.
Ye
,
Q.-Q.
Liu
,
J.-W.
Mao
,
P.-J.
Liang
,
J.-W.
Xu
, and
P.-M.
Zhang
, “
Localization of epileptogenic zone based on graph analysis of stereo-EEG
,”
Epilepsy Res.
128
,
149
157
(
2016
).
79.
A.
Sanz-Garcia
,
T.
Rings
, and
K.
Lehnertz
, “
Impact of type of intracranial EEG sensors on link strengths of evolving functional brain networks
,”
Physiol. Meas.
39
,
074003
(
2018
).
80.
F.
Mormann
,
K.
Lehnertz
,
P.
David
, and
C. E.
Elger
, “
Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients
,”
Physica D
144
,
358
369
(
2000
).
81.
S.
Boccaletti
,
J.
Almendral
,
S.
Guan
,
I.
Leyva
,
Z.
Liu
,
I.
Sendiña-Nadal
,
Z.
Wang
, and
Y.
Zou
, “
Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization
,”
Phys. Rep.
660
,
1
94
(
2016
).
You do not currently have access to this content.