This article studies the rotational dynamics of three identical coupled pendulums. There exist two parameter areas where the in-phase rotational motion is unstable and out-of-phase rotations are realized. Asymptotic theory is developed that allows us to analytically identify borders of instability areas of in-phase rotation motion. It is shown that out-of-phase rotations are the result of the parametric instability of in-phase motion. Complex out-of-phase rotations are numerically found and their stability and bifurcations are defined. It is demonstrated that the emergence of chaotic dynamics happens due to the period doubling bifurcation cascade. The detailed scenario of symmetry breaking is presented. The development of chaotic dynamics leads to the origin of two chaotic attractors of different types. The first one is characterized by the different phases of all pendulums. In the second case, the phases of the two pendulums are equal, and the phase of the third one is different. This regime can be interpreted as a drum-head mode in star-networks. It may also indicate the occurrence of chimera states in chains with a greater number of nearest-neighbour interacting elements and in analogical systems with global coupling.

1.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization. A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2001
).
2.
G. V.
Osipov
,
J.
Kurths
, and
Ch.
Zhou
,
Synchronization in Oscillatory Networks
(
Springer Verlag
,
Berlin
,
2007
).
3.
V. S.
Afraimovich
,
V. I.
Nekorkin
,
G. V.
Osipov
, and
V. D.
Shalfeev
,
Stability, Structures and Chaos in Nonlinear Synchronization Networks
(
World Scientific
,
Singapore
,
1994
).
4.
A.
Barone
and
G.
Paterno
,
Physics and Applications of the Josephson Effect
(
John Wiley and Sons Inc.
,
1982
).
5.
L. V.
Yakushevich
,
Nonlinear Physics of DNA
, 2nd ed. (
Wiley-VCH
,
Weinheim
,
2004
).
6.
O. M.
Braun
and
Yu. S.
Kivshar
,
The Frenkel-Kontorova Model: Concepts, Methods, and Applications
(
Springer
,
Berlin
,
2004
).
7.
A.
Pikovsky
and
M.
Rosenblum
, “
Dynamics of globally coupled oscillators: Progress and perspectives
,”
Chaos
25
,
097616
(
2015
).
8.
F. A.
Rodrigues
,
T. K. D.
Peron
,
P.
Ji
, and
J.
Kurths
, “
Kuramoto model in complex networks
,”
Phys. Rep.
610
,
1
(
2016
).
9.
M. J.
Panaggio
and
D. M.
Abrams
, “
Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators
,”
Nonlinearity
28
,
R67
(
2015
).
10.
N.
Yao
and
Z.
Zheng
, “
Chimera states in spatiotemporal systems: Theory and applications
,”
Int. J. Mod. Phys. B
30
,
1630002
(
2016
).
11.
F. P.
Kemeth
,
S. W.
Haugland
,
L.
Schmidt
,
I. G.
Kevrekidis
, and
K.
Krischer
, “
Aclassification scheme for chimera states
,”
Chaos
26
,
094815
(
2016
).
12.
O. E.
Omel’chenko
, “
The mathematics behind chimera states
,”
Nonlinearity
31
,
R121
(
2018
).
13.
L.
Smirnov
,
G.
Osipov
, and
A.
Pikovsky
, “
Chimera patterns in the Kuramoto–Battogtokh model
,”
J. Phys. A Math. Theor.
50
,
08LT01
(
2017
).
14.
M. I.
Bolotov
,
L. A.
Smirnov
,
G. V.
Osipov
, and
A.
Pikovsky
, “
Breathing chimera in a system of phase oscillators
,”
JETP Lett.
106
,
393
(
2017
).
15.
M.
Bolotov
,
L.
Smirnov
,
G.
Osipov
, and
A.
Pikovsky
, “
Simple and complex chimera states in a nonlinearly coupled oscillatory medium
,”
Chaos
28
,
045101
(
2018
).
16.
P.
Ashwin
and
O.
Burylko
, “
Weak chimeras in minimal networks of coupled phase oscillators
,”
Chaos
25
,
013106
(
2015
).
17.
M. J.
Panaggio
,
D. M.
Abrams
,
P.
Ashwin
, and
C. R.
Laing
, “
Chimera states in networks of phase oscillators: The case of two small populations
,”
Phys. Rev. E
93
,
012218
(
2016
).
18.
C.
Bick
and
P.
Aswin
, “
Chaotic weak chimeras and their persistence in coupled populations of phase oscillators
,”
Nonlinearity
29
,
1468
(
2016
).
19.
J. D.
Hart
,
K.
Bansal
,
T. E.
Murphy
, and
R.
Roy
, “
Experimental observation of chimera and cluster states in a minimal globally coupled network
,”
Chaos
26
,
094801
(
2016
).
20.
F. P.
Kemeth
,
S. W.
Haugland
, and
K.
Krischer
, “
Symmetries of chimera states
,”
Phys. Rev. Lett.
120
,
214101
(
2018
).
21.
C.
Bick
, “
Isotropy of angular frequencies and weak chimeras with broken symmetry
,”
J. Nonlinear Sci.
27
,
605
(
2017
).
22.
Y.
Maistrenko
,
S.
Brezetsky
,
P.
Jaros
,
R.
Levchenko
, and
T.
Kapitaniak
, “
Smallest chimera states
,”
Phys. Rev. E
95
,
010203(R)
(
2017
).
23.
D.
Dudkowski
,
J.
Grabski
,
J.
Wojewoda
,
P.
Perlikowski
,
Yu.
Maistrenko
, and
T.
Kapitaniak
, “
Experimental multistable states for small network of coupled pendula
,”
Sci. Rep.
6
,
29833
(
2016
).
24.
J.
Wojewoda
,
K.
Czolczynski
,
Y.
Maistrenko
, and
T.
Kapitaniak
, “
The smallest chimera state for coupled pendula
,”
Sci. Rep.
6
,
34329
(
2016
).
25.
S.
Homma
and
S.
Takeno
, “
A coupled base-rotator model for structure and dynamics of DNA: Local fluctuations in helical twist angles and topological solitons
,”
Prog. Theor. Phys.
72
,
4
(
1984
).
26.
S.
Takeno
and
S.
Homma
, “
Kinks and breathers associated with collective sugar puckering in DNA
,”
Prog. Theor. Phys.
77
,
3
(
1987
).
27.
S.
Ryu
,
W.
Yu
, and
D.
Stroud
, “
Dynamics of an underdamped Josephson-junction ladder
,”
Phys. Rev. E
53
,
2190
(
1996
).
28.
M.
Qian
and
J.-Z.
Wang
, “
Transitions in two sinusoidally coupled Josephson junction rotators
,”
Ann. Phys.
323
,
1956
(
2008
).
29.
Z.
Zheng
,
B.
Hu
, and
G.
Hu
, “
Spatiotemporal dynamics of discrete sine-Gordon lattices with sinusoidal couplings
,”
Phys. Rev. E
57
,
1139
(
1998
).
30.
J. R.
Terry
,
K. S.
Thornburg
,
D. J.
DeShazer
,
G. D.
VanWiggeren
,
S.
Zhu
,
P.
Ashwin
, and
R.
Roy
, “
Synchronization of chaos in an array of three lasers
,”
Phys. Rev.E
59
,
4036
(
1999
).
31.
R.
Banerjee
,
D.
Ghosh
,
E.
Padmanaban
,
R.
Ramaswamy
,
L. M.
Pecora
, and
S. K.
Dana
, “
Enhancing synchrony in chaotic oscillators by dynamic relaying
,”
Phys. Rev. E
85
,
027201
(
2012
).
32.
L. M.
Pecora
and
T. L.
Carroll
, “
Master stability functions for synchronized coupled systems
,”
Phys. Rev. Lett.
80
,
2109
2112
(
1998
).
33.
L. M.
Pecora
and
T. L.
Carroll
, “
Synchronization stability in coupled oscillator arrays: Solution for arbitrary configurations
,”
Int. J. Bifurcat. Chaos
9
,
1320
2315
(
1999
).
34.
K.
Usha
,
P. A.
Subha
, and
C. R.
Nayak
, “
The route to synchrony via drum head mode and mixed oscillatory state in star coupled Hindmarsh–Rose neural network
,”
Chaos Solitons Fractals
101
,
25
31
(
2018
).
35.
K.
Usha
and
P. A.
Subha
, “
Star-coupled Hindmarsh–Rose neural network with chemical synapses
,”
Int. J. Mod. Phys. C
29
,
1850023
(
2018
).
36.
A. A.
Andronov
,
A. A.
Vitt
, and
S. E.
Khaikin
, in Adiwes International Series in Physics, Theory of Oscillators (Pergamon, 1966).
37.
F.
Tricomi
, “
Integrazione di un’ equazione differenziale presentatasi in elettrotecnica
,”
2
,
1
20
(
1933
).
38.
V. N.
Belykh
,
N. F.
Pedersen
, and
O. H.
Soerensen
, “
Shunted-Josephson-junction model. I. The autonomous case
,”
Phys. Rev. B
16
,
4853
(
1977
).
39.
L. A.
Smirnov
,
A. K.
Kryukov
,
G. V.
Osipov
, and
J.
Kurths
, “
Bistability of rotational modes in a system of coupled pendulums
,”
Regul. Chaotic Dyn.
21
,
849
861
(
2016
).
40.
A. H.
Nayfeh
,
Perturbation Methods
(
John Wiley
,
New York
,
1973
).
41.
A.
Pikovsky
and
A.
Politi
,
Lyapunov Exponents. A Tool to Explore Complex Dynamics
(
Cambridge University Press
,
2016
).
42.
Y. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
(
Springer
,
New York
,
1995
).
43.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed. (
Cambridge University Press
,
New York
,
2007
).
You do not currently have access to this content.