We propose a framework for the analysis of the integro-differential delay Ikeda equations ruling the dynamics of bandpass optoelectronic oscillators (OEOs). Our framework is based on the normal form reduction of OEOs and helps in the determination of the amplitude and the frequency of the primary Hopf limit-cycles as a function of the time delay and other parameters. The study is carried for both the negative and the positive slopes of the sinusoidal transfer function, and our analytical results are confirmed by the numerical and experimental data.

1.
T.
Erneux
,
Applied Delay Differential Equations
(
Springer
,
2010
).
2.
M.
Lakshamanan
and
D. V.
Senthikumar
,
Dynamics of Nonlinear Time-Delay Systems
(
Springer
,
2011
).
3.
Y.
Kuang
,
Delay Differential Equations with Applications in Population Dynamics
(
Academic Press
,
Boston
,
1993
).
4.
J.
Li
,
Y.
Kuang
, and
C.
Mason
,
J. Theor. Biol.
242
,
722
735
(
2006
).
5.
H. L.
Smith
, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Mathematics (Springer, New York, 2011).
6.
P.
Grindrod
and
D.
Pinotsis
,
Physica D
240
,
13
20
(
2010
).
7.
S.
Gan
,
J. Comput. Appl. Math.
206
,
898
907
(
2007
).
8.
H.
Chen
and
C.
Zhang
, “
Convergence and stability of extended block boundary value methods for Volterra delay integro-differential equations
,”
Appl. Numer. Math.
62
,
141
154
(
2012
).
9.
M. C.
Soriano
,
J.
Garcia-Ojalvo
,
C. R.
Mirasso
, and
I.
Fischer
, “
Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers
,”
Rev. Mod. Phys.
85
,
421
470
(
2013
).
10.
L.
Larger
, “
Complexity in electro-optic delay dynamics: Modelling, design and applications
,”
Philos. Trans. R. Soc. A
371
,
20120464
(
2013
).
11.
X. S.
Yao
and
L.
Maleki
, “
Optoelectronic microwave oscillator
,”
J. Opt. Soc. Am. B
13
,
1725
1735
(
1996
).
12.
L.
Maleki
, “
The optoelectronic oscillator
,”
Nat. Photonics
5
,
728
730
(
2011
).
13.
J.
Yang
,
J.-L.
Yu
,
Y.-T.
Wang
,
L.-T.
Zhang
, and
E.-Z.
Yang
, “
An optical domain combined dual-loop optoelectronic oscillator
,”
IEEE Photon. Technol. Lett.
19
,
807
809
(
2007
).
14.
Y. K.
Chembo
,
L.
Larger
,
R.
Bendoula
, and
P.
Colet
, “
Effects of gain and bandwidth on the multimode behavior of optoelectronic microwave oscillators
,”
Opt. Express
16
,
9067
9072
(
2008
).
15.
J. M.
Kim
and
D.
Cho
, “
Optoelectronic oscillator stabilized to an intra-loop Fabry-Perot cavity by a dual servo system
,”
Opt. Express
18
,
14905
14912
(
2010
).
16.
W.
Li
and
J.
Yao
, “
An optically tunable optoelectronic oscillator
,”
IEEE J. Lightw. Technol.
28
,
2640
2645
(
2010
).
17.
E. C.
Levy
and
M.
Horowitz
, “
Single-cycle radio-frequency pulse generation by an optoelectronic oscillator
,”
Opt. Express
19
,
17599
17608
(
2011
).
18.
I.
Ozdur
,
M.
Akbulut
,
N.
Hoghooghi
,
D.
Mandridis
,
M. U.
Piracha
, and
P. J.
Delfyett
, “
Optoelectronic loop design with 1000 finesse Fabry–Perot etalon
,”
Opt. Lett.
35
,
799
801
(
2010
).
19.
O.
Okusaga
,
E. J.
Adles
,
E. C.
Levy
,
W.
Zhou
,
G. M.
Carter
,
C. R.
Menyuk
, and
M.
Horowitz
, “
Spurious mode reduction in dual injection-locked optoelectronic oscillators
,”
Opt. Express
19
,
5839
5854
(
2011
).
20.
R. M.
Nguimdo
,
Y. K.
Chembo
,
P.
Colet
, and
L.
Larger
, “
On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators
,”
IEEE J. Quantum Electron.
48
,
1415
1423
(
2012
).
21.
K.
Saleh
,
R.
Henriet
,
S.
Diallo
,
G.
Lin
,
R.
Martinenghi
,
I. V.
Balakireva
,
P.
Salzenstein
,
A.
Coillet
, and
Y. K.
Chembo
, “
Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators
,”
Opt. Express
22
,
32158
32173
(
2014
).
22.
A. F.
Talla
,
R.
Martinenghi
,
G. R. G.
Chengui
,
J. H.
Talla Mbé
,
K.
Saleh
,
A.
Coillet
,
G.
Lin
,
P.
Woafo
, and
Y. K.
Chembo
, “
Analysis of phase-locking in narrow-band optoelectronic oscillators with intermediate frequency
,”
IEEE J. Quantum Electron.
51
,
5000108
(
2015
).
23.
A.
Argyris
,
D.
Syvridis
,
L.
Larger
,
V.
Annovazzi-Lodi
,
P.
Colet
,
I.
Fischer
,
J.
Garcia-Ojalvo
,
C. R.
Mirasso
,
L.
Pesquera
, and
K. A.
Shore
, “
Chaos-based communications at high bit rates using commercial fibre-optic links
,”
Nature
438
,
343
346
(
2005
).
24.
R. M.
Nguimdo
,
R.
Lavrov
,
P.
Colet
,
M.
Jacquot
,
Y. K.
Chembo
, and
L.
Larger
, “
Effect of fiber dispersion on broadband chaos communications implemented by electro-optic nonlinear delay phase dynamics
,”
J. Lightw. Technol.
28
,
2688
2696
(
2010
).
25.
J.
Ai
,
L.
Wang
, and
J.
Wang
, “
Secure communications of CAP-4 and OOK signals over MMF based on electro-optic chaos
,”
Opt. Lett.
42
,
3662
3665
(
2017
).
26.
J.
Oden
,
R.
Lavrov
,
Y. K.
Chembo
, and
L.
Larger
, “
Multi-Gbit/s optical phase chaos communications using a time-delayed optoelectronic oscillator with a three-wave interferometer nonlinearity
,”
Chaos
27
,
114311
(
2017
).
27.
M.
Grapinet
,
V.
Udaltsov
,
M.
Jacquot
,
P.-A.
Lacourt
,
J. M.
Dedley
, and
L.
Larger
, “
Experimental chaotic map generated by picosecond laser pulse-seeded electro-optic nonlinear delay dynamics
,”
Chaos
18
,
013110
(
2008
).
28.
Y. K.
Chembo
, “
Laser-based optoelectronic generation of narrowband microwave chaos for radars and radio-communication scrambling
,”
Opt. Lett.
42
,
3431
3434
(
2017
).
29.
L.
Larger
,
A.
Baylon-Fuentes
,
R.
Martinenghi
,
V. S.
Udaltsov
,
Y. K.
Chembo
, and
M.
Jacquot
, “
High-speed photonic reservoir computing using a time-delay-based architecture: Million words per second classification
,”
Phys. Rev. X
7
,
011015
(
2017
).
30.
X.
Zou
,
X.
Liu
,
W.
Li
,
P.
Li
,
W.
Pan
,
L.
Yan
, and
L.
Shao
, “
Optoelectronic oscillators (OEOs) to sensing, measurement, and detection
,”
IEEE J. Quantum Electron.
52
,
0601116
(
2016
).
31.
K.
Ikeda
, “
Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system
,”
Opt. Commun.
30
,
257
261
(
1979
).
32.
Y. C.
Kouomou
,
P.
Colet
,
L.
Larger
, and
N.
Gastaud
, “
Chaotic breathers in delayed electro-optical systems
,”
Phys. Rev. Lett.
95
,
203903
(
2005
).
33.
A. B.
Cohen
,
B.
Ravoori
,
T. E.
Murphy
, and
R.
Roy
, “
Using synchronization for prediction of high-dimensional chaotic dynamics
,”
Phys. Rev. Lett.
101
,
154102
(
2008
).
34.
L.
Weicker
,
T.
Erneux
,
O.
D’Huys
,
J.
Danckaert
,
M.
Jacquot
,
Y. K.
Chembo
, and
L.
Larger
, “
Strongly asymmetric square waves in a time-delayed system
,”
Phys. Rev. E
86
,
055201
(
2012
).
35.
L.
Weicker
,
T.
Erneux
,
O.
D’Huys
,
J.
Danckaert
,
M.
Jacquot
,
Y. K.
Chembo
, and
L.
Larger
, “
Slow-fast dynamics of a time-delayed electro-optic oscillator
,”
Philos. Trans. R. Soc. A
371
,
20120459
(
2013
).
36.
K. E.
Callan
,
L.
Illing
,
Z.
Gao
,
D. J.
Gauthier
, and
E.
Scholl
, “
Broadband chaos generated by an optoelectronic oscillator
,”
Phys. Rev. Lett.
104
,
113901
(
2010
).
37.
D. P.
Rosin
,
K. E.
Callan
,
D. J.
Gauthier
, and
E.
Scholl
, “
Pulse-train solutions and excitability in an optoelectronic oscillator
,”
Eur. Phys. Lett.
96
,
34001
(
2011
).
38.
B.
Ravoori
,
A. B.
Cohen
,
J.
Sun
,
A. E.
Motter
,
T. E.
Murphy
, and
R.
Roy
, “
Robustness of optimal synchronization in real networks
,”
Phys. Rev. Lett.
107
,
034102
(
2011
).
39.
G. R. G.
Chengui
,
A. F.
Talla
,
J. H.
Talla Mbé
,
A.
Coillet
,
K.
Saleh
,
L.
Larger
,
P.
Woafo
, and
Y. K.
Chembo
, “
Theoretical and experimental study of slow-scale Hopf limit-cycles in laser-based wideband optoelectronic oscillators
,”
J. Opt. Soc. Am. B
31
,
2310
2316
(
2014
).
40.
B. A.
Marquez
,
J. J.
Suarez-Vargas
, and
J. A.
Ramírez
, “
Polynomial law for controlling the generation of n-scroll chaotic attractors in an optoelectronic delayed oscillator
,”
Chaos
24
,
033123
(
2014
).
41.
J. H.
Talla Mbé
,
A. F.
Talla
,
G. R. G.
Chengui
,
A.
Coillet
,
L.
Larger
,
P.
Woafo
, and
Y. K.
Chembo
, “
Mixed-mode oscillations in slow-fast delayed optoelectronic systems
,”
Phys. Rev. E
91
,
012902
(
2015
).
42.
Y. K.
Chembo
,
M.
Jacquot
,
J. M.
Dudley
, and
L.
Larger
, “
Ikeda-like chaos on a dynamically filtered supercontinuum light source
,”
Phys. Rev. A
94
,
023847
(
2016
).
43.
B.
Romeira
,
J.
Javaloyes
,
J. M. L.
Figueiredo
,
C. N.
Ironside
,
H. I.
Cantu
, and
A. E.
Kelly
, “
Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators
,”
IEEE J. Quantum Electron.
49
,
31
42
(
2013
).
44.
Y. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
, 2nd ed. (
Springer-Verlag, New York
,
1998
).
45.
J.
Guckenheimer
and
P.
Holmes
, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vectors Fields, Applied Mathematical Sciences Vol. 42 (Springer, 1985).
46.
M.
Haragus
and
G.
Iooss
,
Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems
(
Springer
,
2010
).
47.
M.
Han
and
P.
Yei
,
Normal Forms, Melnikov Functions and Bifurcation of Limit Cycles
(
Springer
,
2012
).
48.
A. H.
Nayfeh
,
The Method of Normal Forms
(
Wiley-VCH
,
2011
).
49.
L.
Illing
and
D. J.
Gauthier
, “
Hopf bifurcations in time-delay systems with band-limited feedback
,”
J. Opt. Soc. Am. B
13
,
1725
1735
(
1996
).
50.
G. R. G.
Chengui
,
P.
Woafo
, and
Y. K.
Chembo
, “
The simplest laser-based optoelectronic oscillator: An experimental and theoretical study
,”
IEEE J. Lightw. Technol.
34
,
873
878
(
2016
).
51.
G. R. G.
Chengui
,
J. H.
Talla Mbé
,
A. F.
Talla
,
P.
Woafo
, and
Y. K.
Chembo
, “
Dynamics of optoelectronic oscillator with electronic and laser nonlinearity
,”
IEEE J. Quantum Electron.
54
,
5000207
(
2018
).
52.
B.
Ravoori
,
A. B.
Cohen
,
A. V.
Setty
,
F.
Serrentino
,
T. E.
Murphy
,
E.
Ott
, and
R.
Roy
, “
Adaptive synchronization of coupled chaotic oscillators
,”
Phys. Rev. E
80
,
056205
(
2009
).
You do not currently have access to this content.