We propose a framework for the analysis of the integro-differential delay Ikeda equations ruling the dynamics of bandpass optoelectronic oscillators (OEOs). Our framework is based on the normal form reduction of OEOs and helps in the determination of the amplitude and the frequency of the primary Hopf limit-cycles as a function of the time delay and other parameters. The study is carried for both the negative and the positive slopes of the sinusoidal transfer function, and our analytical results are confirmed by the numerical and experimental data.
REFERENCES
1.
2.
M.
Lakshamanan
and D. V.
Senthikumar
, Dynamics of Nonlinear Time-Delay Systems
(Springer
, 2011
).3.
Y.
Kuang
, Delay Differential Equations with Applications in Population Dynamics
(Academic Press
, Boston
, 1993
).4.
J.
Li
, Y.
Kuang
, and C.
Mason
, J. Theor. Biol.
242
, 722
–735
(2006
). 5.
H. L.
Smith
, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Mathematics (Springer, New York, 2011).6.
P.
Grindrod
and D.
Pinotsis
, Physica D
240
, 13
–20
(2010
). 7.
S.
Gan
, J. Comput. Appl. Math.
206
, 898
–907
(2007
). 8.
H.
Chen
and C.
Zhang
, “Convergence and stability of extended block boundary value methods for Volterra delay integro-differential equations
,” Appl. Numer. Math.
62
, 141
–154
(2012
). 9.
M. C.
Soriano
, J.
Garcia-Ojalvo
, C. R.
Mirasso
, and I.
Fischer
, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers
,” Rev. Mod. Phys.
85
, 421
–470
(2013
). 10.
L.
Larger
, “Complexity in electro-optic delay dynamics: Modelling, design and applications
,” Philos. Trans. R. Soc. A
371
, 20120464
(2013
). 11.
X. S.
Yao
and L.
Maleki
, “Optoelectronic microwave oscillator
,” J. Opt. Soc. Am. B
13
, 1725
–1735
(1996
). 12.
L.
Maleki
, “The optoelectronic oscillator
,” Nat. Photonics
5
, 728
–730
(2011
). 13.
J.
Yang
, J.-L.
Yu
, Y.-T.
Wang
, L.-T.
Zhang
, and E.-Z.
Yang
, “An optical domain combined dual-loop optoelectronic oscillator
,” IEEE Photon. Technol. Lett.
19
, 807
–809
(2007
). 14.
Y. K.
Chembo
, L.
Larger
, R.
Bendoula
, and P.
Colet
, “Effects of gain and bandwidth on the multimode behavior of optoelectronic microwave oscillators
,” Opt. Express
16
, 9067
–9072
(2008
). 15.
J. M.
Kim
and D.
Cho
, “Optoelectronic oscillator stabilized to an intra-loop Fabry-Perot cavity by a dual servo system
,” Opt. Express
18
, 14905
–14912
(2010
). 16.
W.
Li
and J.
Yao
, “An optically tunable optoelectronic oscillator
,” IEEE J. Lightw. Technol.
28
, 2640
–2645
(2010
). 17.
E. C.
Levy
and M.
Horowitz
, “Single-cycle radio-frequency pulse generation by an optoelectronic oscillator
,” Opt. Express
19
, 17599
–17608
(2011
). 18.
I.
Ozdur
, M.
Akbulut
, N.
Hoghooghi
, D.
Mandridis
, M. U.
Piracha
, and P. J.
Delfyett
, “Optoelectronic loop design with 1000 finesse Fabry–Perot etalon
,” Opt. Lett.
35
, 799
–801
(2010
). 19.
O.
Okusaga
, E. J.
Adles
, E. C.
Levy
, W.
Zhou
, G. M.
Carter
, C. R.
Menyuk
, and M.
Horowitz
, “Spurious mode reduction in dual injection-locked optoelectronic oscillators
,” Opt. Express
19
, 5839
–5854
(2011
). 20.
R. M.
Nguimdo
, Y. K.
Chembo
, P.
Colet
, and L.
Larger
, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators
,” IEEE J. Quantum Electron.
48
, 1415
–1423
(2012
). 21.
K.
Saleh
, R.
Henriet
, S.
Diallo
, G.
Lin
, R.
Martinenghi
, I. V.
Balakireva
, P.
Salzenstein
, A.
Coillet
, and Y. K.
Chembo
, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators
,” Opt. Express
22
, 32158
–32173
(2014
). 22.
A. F.
Talla
, R.
Martinenghi
, G. R. G.
Chengui
, J. H.
Talla Mbé
, K.
Saleh
, A.
Coillet
, G.
Lin
, P.
Woafo
, and Y. K.
Chembo
, “Analysis of phase-locking in narrow-band optoelectronic oscillators with intermediate frequency
,” IEEE J. Quantum Electron.
51
, 5000108
(2015
). 23.
A.
Argyris
, D.
Syvridis
, L.
Larger
, V.
Annovazzi-Lodi
, P.
Colet
, I.
Fischer
, J.
Garcia-Ojalvo
, C. R.
Mirasso
, L.
Pesquera
, and K. A.
Shore
, “Chaos-based communications at high bit rates using commercial fibre-optic links
,” Nature
438
, 343
–346
(2005
). 24.
R. M.
Nguimdo
, R.
Lavrov
, P.
Colet
, M.
Jacquot
, Y. K.
Chembo
, and L.
Larger
, “Effect of fiber dispersion on broadband chaos communications implemented by electro-optic nonlinear delay phase dynamics
,” J. Lightw. Technol.
28
, 2688
–2696
(2010
). 25.
J.
Ai
, L.
Wang
, and J.
Wang
, “Secure communications of CAP-4 and OOK signals over MMF based on electro-optic chaos
,” Opt. Lett.
42
, 3662
–3665
(2017
). 26.
J.
Oden
, R.
Lavrov
, Y. K.
Chembo
, and L.
Larger
, “Multi-Gbit/s optical phase chaos communications using a time-delayed optoelectronic oscillator with a three-wave interferometer nonlinearity
,” Chaos
27
, 114311
(2017
). 27.
M.
Grapinet
, V.
Udaltsov
, M.
Jacquot
, P.-A.
Lacourt
, J. M.
Dedley
, and L.
Larger
, “Experimental chaotic map generated by picosecond laser pulse-seeded electro-optic nonlinear delay dynamics
,” Chaos
18
, 013110
(2008
). 28.
Y. K.
Chembo
, “Laser-based optoelectronic generation of narrowband microwave chaos for radars and radio-communication scrambling
,” Opt. Lett.
42
, 3431
–3434
(2017
). 29.
L.
Larger
, A.
Baylon-Fuentes
, R.
Martinenghi
, V. S.
Udaltsov
, Y. K.
Chembo
, and M.
Jacquot
, “High-speed photonic reservoir computing using a time-delay-based architecture: Million words per second classification
,” Phys. Rev. X
7
, 011015
(2017
). 30.
X.
Zou
, X.
Liu
, W.
Li
, P.
Li
, W.
Pan
, L.
Yan
, and L.
Shao
, “Optoelectronic oscillators (OEOs) to sensing, measurement, and detection
,” IEEE J. Quantum Electron.
52
, 0601116
(2016
). 31.
K.
Ikeda
, “Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system
,” Opt. Commun.
30
, 257
–261
(1979
). 32.
Y. C.
Kouomou
, P.
Colet
, L.
Larger
, and N.
Gastaud
, “Chaotic breathers in delayed electro-optical systems
,” Phys. Rev. Lett.
95
, 203903
(2005
). 33.
A. B.
Cohen
, B.
Ravoori
, T. E.
Murphy
, and R.
Roy
, “Using synchronization for prediction of high-dimensional chaotic dynamics
,” Phys. Rev. Lett.
101
, 154102
(2008
). 34.
L.
Weicker
, T.
Erneux
, O.
D’Huys
, J.
Danckaert
, M.
Jacquot
, Y. K.
Chembo
, and L.
Larger
, “Strongly asymmetric square waves in a time-delayed system
,” Phys. Rev. E
86
, 055201
(2012
). 35.
L.
Weicker
, T.
Erneux
, O.
D’Huys
, J.
Danckaert
, M.
Jacquot
, Y. K.
Chembo
, and L.
Larger
, “Slow-fast dynamics of a time-delayed electro-optic oscillator
,” Philos. Trans. R. Soc. A
371
, 20120459
(2013
). 36.
K. E.
Callan
, L.
Illing
, Z.
Gao
, D. J.
Gauthier
, and E.
Scholl
, “Broadband chaos generated by an optoelectronic oscillator
,” Phys. Rev. Lett.
104
, 113901
(2010
). 37.
D. P.
Rosin
, K. E.
Callan
, D. J.
Gauthier
, and E.
Scholl
, “Pulse-train solutions and excitability in an optoelectronic oscillator
,” Eur. Phys. Lett.
96
, 34001
(2011
). 38.
B.
Ravoori
, A. B.
Cohen
, J.
Sun
, A. E.
Motter
, T. E.
Murphy
, and R.
Roy
, “Robustness of optimal synchronization in real networks
,” Phys. Rev. Lett.
107
, 034102
(2011
). 39.
G. R. G.
Chengui
, A. F.
Talla
, J. H.
Talla Mbé
, A.
Coillet
, K.
Saleh
, L.
Larger
, P.
Woafo
, and Y. K.
Chembo
, “Theoretical and experimental study of slow-scale Hopf limit-cycles in laser-based wideband optoelectronic oscillators
,” J. Opt. Soc. Am. B
31
, 2310
–2316
(2014
). 40.
B. A.
Marquez
, J. J.
Suarez-Vargas
, and J. A.
Ramírez
, “Polynomial law for controlling the generation of n-scroll chaotic attractors in an optoelectronic delayed oscillator
,” Chaos
24
, 033123
(2014
). 41.
J. H.
Talla Mbé
, A. F.
Talla
, G. R. G.
Chengui
, A.
Coillet
, L.
Larger
, P.
Woafo
, and Y. K.
Chembo
, “Mixed-mode oscillations in slow-fast delayed optoelectronic systems
,” Phys. Rev. E
91
, 012902
(2015
). 42.
Y. K.
Chembo
, M.
Jacquot
, J. M.
Dudley
, and L.
Larger
, “Ikeda-like chaos on a dynamically filtered supercontinuum light source
,” Phys. Rev. A
94
, 023847
(2016
). 43.
B.
Romeira
, J.
Javaloyes
, J. M. L.
Figueiredo
, C. N.
Ironside
, H. I.
Cantu
, and A. E.
Kelly
, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators
,” IEEE J. Quantum Electron.
49
, 31
–42
(2013
). 44.
Y. A.
Kuznetsov
, Elements of Applied Bifurcation Theory
, 2nd ed. (Springer-Verlag, New York
, 1998
).45.
J.
Guckenheimer
and P.
Holmes
, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vectors Fields, Applied Mathematical Sciences Vol. 42 (Springer, 1985).46.
M.
Haragus
and G.
Iooss
, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems
(Springer
, 2010
).47.
M.
Han
and P.
Yei
, Normal Forms, Melnikov Functions and Bifurcation of Limit Cycles
(Springer
, 2012
).48.
49.
L.
Illing
and D. J.
Gauthier
, “Hopf bifurcations in time-delay systems with band-limited feedback
,” J. Opt. Soc. Am. B
13
, 1725
–1735
(1996
). 50.
G. R. G.
Chengui
, P.
Woafo
, and Y. K.
Chembo
, “The simplest laser-based optoelectronic oscillator: An experimental and theoretical study
,” IEEE J. Lightw. Technol.
34
, 873
–878
(2016
). 51.
G. R. G.
Chengui
, J. H.
Talla Mbé
, A. F.
Talla
, P.
Woafo
, and Y. K.
Chembo
, “Dynamics of optoelectronic oscillator with electronic and laser nonlinearity
,” IEEE J. Quantum Electron.
54
, 5000207
(2018
). 52.
B.
Ravoori
, A. B.
Cohen
, A. V.
Setty
, F.
Serrentino
, T. E.
Murphy
, E.
Ott
, and R.
Roy
, “Adaptive synchronization of coupled chaotic oscillators
,” Phys. Rev. E
80
, 056205
(2009
). © 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.