We study the impact of noise on the rate dependent transitions in a noisy bistable oscillator using a thermoacoustic system as an example. As the parameter—the heater power—is increased in a quasi-steady manner, beyond a critical value, the thermoacoustic system undergoes a subcritical Hopf bifurcation and exhibits periodic oscillations. We observe that the transition to this oscillatory state is often delayed when the control parameter is varied as a function of time. However, the presence of inherent noise in the system introduces high variability in the characteristics of this critical transition. As a result, if the value of the system variable—the acoustic pressure—approaches the noise floor before the system crosses the unstable manifold, the effect of rate on the critical transition becomes irrelevant in determining the transition characteristics, and the system undergoes a noise-induced tipping to limit-cycle oscillations. The presence of noise-induced tipping makes it difficult to identify the stability regimes in such systems by using stability maps for the corresponding deterministic system.

1.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
CRC Press
,
2018
).
2.
J. R.
Tredicce
,
G. L.
Lippi
,
P.
Mandel
,
B.
Charasse
,
A.
Chevalier
, and
B.
Picqué
, “
Critical slowing down at a bifurcation
,”
Am. J. Phys.
72
,
799
809
(
2004
).
3.
A.
Majumdar
,
J.
Ockendon
,
P.
Howell
, and
E.
Surovyatkina
, “
Transitions through critical temperatures in nematic liquid crystals
,”
Phys. Rev. E
88
,
022501
(
2013
).
4.
S. M.
Baer
,
T.
Erneux
, and
J.
Rinzel
, “
The slow passage through a Hopf bifurcation: Delay, memory effects, and resonance
,”
SIAM J. Appl. Math.
49
,
55
71
(
1989
).
5.
L.
Bilinsky
and
S.
Baer
, “
Slow passage through a Hopf bifurcation in excitable nerve cables: Spatial delays and spatial memory effects
,”
Bull. Math. Biol.
80
,
130
150
(
2018
).
6.
P.
Ashwin
,
C.
Perryman
, and
S.
Wieczorek
, “
Parameter shifts for nonautonomous systems in low dimension: Bifurcation-and rate-induced tipping
,”
Nonlinearity
30
,
2185
(
2017
).
7.
W.
Scharpf
,
M.
Squicciarini
,
D.
Bromley
,
C.
Green
,
J.
Tredicce
, and
L.
Narducci
, “
Experimental observation of a delayed bifurcation at the threshold of an argon laser
,”
Opt. Commun.
63
,
344
348
(
1987
).
8.
J.
Tony
,
S.
Subarna
,
K.
Syamkumar
,
G.
Sudha
,
S.
Akshay
,
E.
Gopalakrishnan
,
E.
Surovyatkina
, and
R.
Sujith
, “
Experimental investigation on preconditioned rate induced tipping in a thermoacoustic system
,”
Sci. Rep.
7
,
5414
(
2017
).
9.
D.
Premraj
,
K.
Suresh
,
T.
Banerjee
, and
K.
Thamilmaran
, “
An experimental study of slow passage through Hopf and pitchfork bifurcations in a parametrically driven nonlinear oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
37
,
212
221
(
2016
).
10.
A.
Pisarchik
, “
Dynamical tracking of unstable periodic orbits
,”
Phys. Lett. A
242
,
152
162
(
1998
).
11.
A.
Pisarchik
and
R.
Corbalán
, “
Shift of attractor boundaries in a system with a slow harmonic parameter perturbation
,”
Phys. D Nonlinear Phenom.
150
,
14
24
(
2001
).
12.
A.
Pisarchik
,
R.
Jaimes-Reátegui
,
C. A.
Magallón-García
, and
C. O.
Castillo-Morales
, “
Critical slowing down and noise-induced intermittency in bistable perception: Bifurcation analysis
,”
Biol. Cybern.
108
,
397
404
(
2014
).
13.
N.
Berglund
and
B.
Gentz
, “
Pathwise description of dynamic pitchfork bifurcations with additive noise
,”
Probab. Theory Relat. Fields
122
,
341
388
(
2002
).
14.
N.
Berglund
and
B.
Gentz
, “
On the noise-induced passage through an unstable periodic orbit II: General case
,”
SIAM J. Math. Anal.
46
,
310
352
(
2014
).
15.
M. P.
Juniper
and
R.
Sujith
, “
Sensitivity and nonlinearity of thermoacoustic oscillations
,”
Annu. Rev. Fluid Mech.
50
,
661
689
(
2018
).
16.
G.
Bonciolini
,
D.
Ebi
,
E.
Boujo
, and
N.
Noiray
, “
Experiments and modelling of rate-dependent transition delay in a stochastic subcritical bifurcation
,”
R. Soc. Open Sci.
5
,
172078
(
2018
).
17.
S.
Etikyala
and
R.
Sujith
, “
Change of criticality in a prototypical thermoacoustic system
,”
Chaos
27
,
023106
(
2017
).
18.
K. I.
Matveev
, “
Thermoacoustic instabilities in the Rijke tube: Experiments and modeling
,” Ph.D. thesis (
California Institute of Technology
,
2003
).
19.
M. P.
Juniper
, “
Triggering in the horizontal rijke tube: Non-normality, transient growth and bypass transition
,”
J. Fluid Mech.
667
,
272
308
(
2011
).
20.
P.
Subramanian
, “
Dynamical systems approach to the investigation of thermoacoustic instabilities
,” Ph.D. thesis (
Indian Institute of Technology Madras
,
2011
).
21.
S.
Mariappan
, “
Theoretical and experimental investigation of the non-normal nature of thermoacoustic interactions
,” Ph.D. thesis (
Indian Institute of Technology Madras
,
2011
).
22.
E.
Gopalakrishnan
and
R.
Sujith
, “
Effect of external noise on the hysteresis characteristics of a thermoacoustic system
,”
J. Fluid Mech.
776
,
334
353
(
2015
).
23.
P.
Subramanian
,
R.
Sujith
, and
P.
Wahi
, “
Subcritical bifurcation and bistability in thermoacoustic systems
,”
J. Fluid Mech.
715
,
210
238
(
2013
).
You do not currently have access to this content.