The aim of the present work is to investigate the possibility to retrieve the original sets of dynamical equations directly from observational time series when all the system variables are observed. Time series are generated from chosen dynamical systems, and the global modeling technique is applied to obtain optimal models of parsimonious structure from these time series. The obtained models are then compared to the original equations to investigate if the original equations can be retrieved. Twenty-seven systems are considered in the study. The Rössler system is first used to illustrate the procedure and then to test the robustness of the approach under various conditions, varying the initial conditions, time series length, dynamical regimes, subsampling (and resampling), measurement noise, and dynamical perturbations. The other 26 systems (four rational ones included) of various algebraic structures, sizes, and dimensions are then considered to investigate the generality of the approach.

1.
L. A.
Aguirre
and
C.
Letellier
, “
Modeling nonlinear dynamics and chaos: A review
,”
Math. Probl. Eng.
2009
,
238960
(
2009
).
2.
P. C.
Young
, “
Parameter estimation for continuous-time models—A survey
,”
Automatica
17
(
1
),
23
39
(
1981
).
3.
D. C.
Saha
and
G. P.
Rao
,
Identification of Continuous Dynamical Systems—The Poisson Moment Functionals, (PMF) Approach
(
Springer-Verlag
,
Berlin
,
1983
).
4.
S. A.
Billings
, “
Structure detection and model validity tests in the identification of nonlinear systems
,”
ACSE Rep.
196
,
22
(
1982
).
5.
S. A.
Billings
and
I. J.
Leontaritis
, “
Parameter estimation techniques for nonlinear systems
,”
IFAC Proceedings
15
(4),
505
510
(
1982
).
6.
J. P.
Crutchfield
and
B. S.
McNamara
, “
Equations of motion from a data series
,”
Compl. Syst.
1
,
417
(
1987
).
7.
G.
Gouesbet
and
C.
Letellier
, “
Global vector field reconstruction by using a multivariate polynomial L2-approximation on nets
,”
Phys. Rev. E
49
(
6
),
4955
4972
(
1994
).
8.
C.
Letellier
,
L.
Le Sceller
,
E.
Maréchal
,
P.
Dutertre
,
B.
Maheu
, and
G.
Gouesbet
, “
Global vector field reconstruction from a chaotic experimental signal in copper electrodissolution
,”
Phys. Rev. E
51
(
5
),
4262
4266
(
1995
).
9.
C.
Letellier
,
L. A.
Aguirre
, and
U. S.
Freitas
, “
Frequently asked questions about global modeling
,”
Chaos
19
,
023103
(
2009
).
10.
C.
Lainscsek
,
C.
Letellier
, and
C.
Schürrer
, “
Ansatz library for global modeling with a structure selection
,”
Phys. Rev. E
64
,
016206
(
2001
).
11.
C.
Lainscsek
,
C.
Letellier
, and
I.
Gorodnitsky
, “
Global modeling of the Rössler system from the z-variable
,”
Phys. Lett. A
314
(
5–6
),
409
(
2003
).
12.
S.
Mangiarotti
,
R.
Coudret
,
L.
Drapeau
, and
L.
Jarlan
, “
Polynomial search and global modeling: Two algorithms for modeling chaos
,”
Phys. Rev. E
86
,
046205
(
2012
).
13.
S.
Mangiarotti
,
F.
Le Jean
,
M.
Huc
, and
C.
Letellier
, “
Global modeling of aggregated and associated chaotic dynamics
,”
Chaos Solitons Fractals
83
,
82
96
(
2016
).
14.
C.
Letellier
,
S.
Mangiarotti
,
I.
Sendiña-Nadal
, and
O. E.
Rössler
, “
Topological characterization versus synchronization for assessing (or not) dynamical equivalence
,”
Chaos
28
(
4
),
045107
(
2018
).
15.
S.
Mangiarotti
,
L.
Drapeau
, and
C.
Letellier
, “
Two chaotic global models for cereal crops cycles observed from satellite in northern Morocco
,”
Chaos
24
(
2
),
023130
(
2014
).
16.
S.
Mangiarotti
, “Modélisation globale et caractérisation topologique de dynamiques environnementales,” Theses and habilitation to direct researches (Université de Toulouse III,
2014
).
17.
S.
Mangiarotti
,
A. K.
Sharma
,
S.
Corgne
,
L.
Hubert-Moy
,
L.
Ruiz
,
M.
Sekhar
, and
Y.
Kerr
, “
Can the global modelling technique be used for crop classification?
,”
Chaos Solitons Fractals
106
,
363
378
(
2018
).
18.
J.
Maquet
,
C.
Letellier
, and
L. A.
Aguirre
, “
Global models from the Canadian lynx cycles as a direct evidence for chaos in real ecosystems
,”
J. Math. Biol.
55
(
1
),
21
39
(
2007
).
19.
S.
Mangiarotti
, “
Low dimensional chaotic models for the plague epidemic in Bombay (1896-1911)
,”
Chaos Solitons Fractals
81
,
184
196
(
2015
).
20.
S.
Mangiarotti
,
M.
Peyre
, and
M.
Huc
, “
A chaotic model for the epidemic of Ebola virus disease in West Africa (2013-2016)
,”
Chaos
26
,
113112
(
2016
).
21.
L. A.
Aguirre
and
S. A.
Billings
, “
Retrieving dynamical invariants from chaotic data using NARMAX models
,”
Int. J. Bifurcat. Chaos
9
(
2
),
449
474
(
1995
).
22.
S.
Mangiarotti
,
I.
Sendiña-Nadal
, and
C.
Letellier
, “
Using global modelling to unveil hidden couplings in small network motifs
,”
Chaos
28
,
123110
(
2018
).
23.
C.
Lainscsek
, “
Nonuniqueness of global modeling and time scaling
,”
Phys. Rev. E
84
,
046205
(
2011
).
24.
C.
Lainscsek
, “
A class of Lorenz-like systems
,”
Chaos
22
,
013126
(
2012
).
25.
A. M.
Barbosa
,
R. H. C.
Takahashi
, and
L. A.
Aguirre
, “
Equivalence of non-linear model structures based on Pareto uncertainty
,”
IET Control Theory Appl.
9
(
16
),
2423
2429
(
2015
).
26.
L. A.
Aguirre
and
S. A.
Billings
, “
Dynamical effects of overparametrization in nonlinear models
,”
Physica D
80
(
1–2
),
26
40
(
1995
).
27.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
(
5
),
397
398
(
1976
).
28.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
(
2
),
255
268
(
1984
).
29.
W. G.
Hoover
, “
Nonlinear conductivity and entropy in the two-body Boltzmann gas
,”
J. Stat. Phys.
42
(
3–4
),
587
600
(
1986
).
30.
R.
Genesio
and
A.
Tesi
, “
Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems
,”
Automatica
28
(
3
),
531
548
(
1992
).
31.
J. C.
Sprott
, “
Some simple chaotic flows
,”
Phys. Rev. E
50
(
2
),
647
650
(
1994
).
32.
E. N.
Lorenz
, “
Deterministic non-periodic flow
,”
J. Atmos. Sci.
20
(
2
),
130
141
(
1963
).
33.
R.
Shaw
, “
Strange attractor, chaotic behavior and information flow
,”
Z. Naturforschung A
36
,
80
112
(
1981
).
34.
D.
Li
, “
A three-scroll chaotic attractor
,”
Phys. Lett. A
372
,
387
393
(
2007
).
35.
E. N.
Lorenz
, “
Irregularity: A fundamental property of the atmosphere
,”
Tellus
36A
,
98
110
(
1984
).
36.
C.
Letellier
and
L. A.
Aguirre
, “
Required criteria for recognizing new types of chaos: Application to the cord attractor
,”
Phys. Rev. E
85
,
036204
(
2012
).
37.
S.
Vaidyanathan
,
V.-T.
Pham
, and
C. K.
Volos
, “
A 5-D hyperchaotic Rikitake dynamo system with hidden attractors
,”
Eur. Phys. J.
224
,
1575
1592
(
2015
).
38.
T.
Rikitake
, “
Oscillations of a system of disk dynamos
,”
Proc. Cambridge Philosoph. Soc.
54
,
89
105
(
1958
).
39.
J.-M.
Malasoma
,
Chaos Solitons Fractals
13
,
1835
1842
(
2002
).
40.
L. G.
De Pillis
and
A.
Radunskaya
, “
A mathematical tumor model with immune resistance and drug therapy: An optimal control approach
,”
J. Theor. Med.
3
,
79
100
(
2001
).
41.
A.
Sharma
,
A. K.
Sharma
, and
K.
Agnihotri
, “
The dynamic of plankton-nutrient interaction with delay
,”
Appl. Math. Comput.
231
,
503
515
(
2014
).
42.
R.
Gilmore
and
C.
Letellier
,
The Symmetry of Chaos
(
Oxford University Press
,
New York
,
2007
).
43.
M.
Itik
and
S. P.
Banks
, “
Chaos in a three-dimensional cancer model
,”
Int. J. Bifurcat. Chaos
20
(
1
),
71
79
(
2010
).

Supplementary Material

You do not currently have access to this content.