The main objective of this paper is to investigate an accurate numerical method for solving a biological fractional model via Atangana-Baleanu fractional derivative. We focused our attention on linear and nonlinear Fisher’s equations. We use the spectral collocation method based on the Chebyshev approximations. This method reduced the nonlinear equations to a system of ordinary differential equations by using the properties of Chebyshev polynomials and then solved them by using the finite difference method. This is the first time that this method is used to solve nonlinear equations in Atangana-Baleanu sense. We present the effectiveness and accuracy of the proposed method by computing the absolute error and the residual error functions. The results show that the given procedure is an easy and efficient tool to investigate the solution of nonlinear equations with local and non-local singular kernels.

1.
M. M.
Khader
and
K. M.
Saad
, “
A numerical approach for solving the problem of biological invasion (fractional Fisher equation) using Chebyshev spectral collocation method
,”
Chaos Solitons Fractals
110
,
169
177
(
2018
).
2.
M. M.
Khader
and
K. M.
Saad
, “
On the numerical evaluation for studying the fractional KdV, KdV-Burger’s and Burger’s equations
,”
Eur. Phys. J. Plus
133
,
1
13
(
2018
).
3.
S. G.
Kilbas
,
A. A.
Kilbas
, and
O. I.
Marichev
,
Fractional Integrals and Derivatives: Theory and Applications
(
Gordon & Breach
,
Yverdon
,
1993
).
4.
K.
Diethelm
, “
An algorithm for the numerical solution of differential equations of fractional order
,”
Electron. Trans. Numer. Anal.
5
,
1
6
(
1997
).
5.
M. M.
Khader
, “
On the numerical solutions for the fractional diffusion equation
,”
Commun. Nonlinear Sci. Numer. Simul.
16
,
2535
2542
(
2011
).
6.
M. M.
Khader
and
M. M.
Babatin
, “
Numerical treatment for solving fractional SIRC model and influenza A
,”
Comput. Appl. Math.
33
(
3
),
543
556
(
2014
).
7.
I.
Podlubny
,
Fractional Differential Equations
(
Academic Press
,
New York
,
1999
).
8.
T.
Abdeljawad
, “
A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel
,”
J. Inequalities Appl.
130
,
1
11
(
2017
).
9.
T.
Abdeljawad
and
D.
Baleanu
, “
Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel
,”
J. Nonlinear Sci. Appl.
9
,
1098
1107
(
2017
).
10.
M.
Abdulhameed
,
D.
Vieru
, and
R.
Roslan
, “
Modeling electro-magneto-hydrodynamic thermo-fluidic transport of biofluids with new trend of fractional derivative without singular kernel
,”
Physica A
484
,
233
252
(
2017
).
11.
M. J.
Ablowitz
and
A.
Zeppetella
, “
Explicit solutions of Fisher’s equation for a special wave speed
,”
Bull. Math. Biol.
41
,
835
840
(
1979
).
12.
J. F.
Gómez-Aguilar
, “
Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel
,”
Physica A
20
,
562
572
(
2017
).
13.
A. H.
Bhrawy
and
M. A.
Alghamdi
, “
Approximate solutions of Fisher’s type equations with variable coefficients
,”
Abstr. Appl. Anal.
1
,
1
16
(
2013
).
14.
A.
Atangana
, “
Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties
,”
Physica A
505
,
688
706
(
2018
).
15.
A.
Atangana
and
J. F.
Gómez-Aguilar
, “
Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena
,”
Eur. Phys. J. Plus
133
(
166
),
1
23
(
2018
).
16.
A.
Atangana
and
D.
Baleanu
, “
New fractional derivative with non-local and non-singular kernel
,”
Therm. Sci.
20
(
2
),
757
763
(
2016
).
17.
J. C.
Mason
and
D. C.
Handscomb
,
Chebyshev Polynomials
(
Chapman and Hall
,
New York, NY, Boca Raton
,
2003
).
18.
C.
Tadjeran
and
M. M.
Meerschaert
, “
A second-order accurate numerical method for the two dimensional fractional diffusion equation
,”
J. Comput. Phys.
220
,
813
823
(
2007
).
You do not currently have access to this content.