The ubiquitous occurrence of cluster patterns in nature still lacks a comprehensive understanding. It is known that the dynamics of many such natural systems is captured by ensembles of Stuart-Landau oscillators. Here, we investigate clustering dynamics in a mean-coupled ensemble of such limit-cycle oscillators. In particular, we show how clustering occurs in minimal networks and elaborate how the observed 2-cluster states crowd when increasing the number of oscillators. Using persistence, we discuss how this crowding leads to a continuous transition from balanced cluster states to synchronized solutions via the intermediate unbalanced 2-cluster states. These cascade-like transitions emerge from what we call a cluster singularity. At this codimension-2 point, the bifurcations of all 2-cluster states collapse and the stable balanced cluster state bifurcates into the synchronized solution supercritically. We confirm our results using numerical simulations and discuss how our conclusions apply to spatially extended systems.

1.
K.
Okuda
, “
Variety and generality of clustering in globally coupled oscillators
,”
Physica D
63
,
424
436
(
1993
).
2.
S. H.
Strogatz
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Physica D
143
,
1
20
(
2000
).
3.
A.
Pikovsky
and
M.
Rosenblum
, “
Dynamics of globally coupled oscillators: Progress and perspectives
,”
Chaos
25
,
097616
(
2015
).
4.
S.
Watanabe
and
S. H.
Strogatz
, “
Integrability of a globally coupled oscillator array
,”
Phys. Rev. Lett.
70
,
2391
2394
(
1993
).
5.
S.
Watanabe
and
S. H.
Strogatz
, “
Constants of motion for superconducting Josephson arrays
,”
Physica D
74
,
197
253
(
1994
).
6.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
7.
E.
Ott
and
T. M.
Antonsen
, “
Long time evolution of phase oscillator systems
,”
Chaos
19
,
023117
(
2009
).
8.
G. B.
Ermentrout
and
D. H.
Terman
, Mathematical Foundations of Neuroscience, Interdisciplinary Applied Mathematics (Springer-Verlag, New York, 2010).
9.
D.
Golomb
and
J.
Rinzel
, “
Clustering in globally coupled inhibitory neurons
,”
Physica D
72
,
259
282
(
1994
).
10.
L.
Yang
,
M.
Dolnik
,
A. M.
Zhabotinsky
, and
I. R.
Epstein
, “
Oscillatory clusters in a model of the photosensitive Belousov-Zhabotinsky reaction system with global feedback
,”
Phys. Rev. E
62
,
6414
6420
(
2000
).
11.
H. G.
Rotstein
and
H.
Wu
, “
Dynamic mechanisms of generation of oscillatory cluster patterns in a globally coupled chemical system
,”
J. Chem. Phys.
137
,
104908
(
2012
).
12.
Y.
Kuramoto
,
Chemical Oscillations, Waves and Turbulence
(
Springer-Verlag
,
Berlin
,
1984
), Vol. 19, p. 158.
13.
V.
García-Morales
and
K.
Krischer
, “
The complex Ginzburg-Landau equation: An introduction
,”
Contemp. Phys.
53
,
79
95
(
2012
).
14.
V.
García-Morales
and
K.
Krischer
, “
Normal-form approach to spatiotemporal pattern formation in globally coupled electrochemical systems
,”
Phys. Rev. E
78
,
057201
(
2008
).
15.
V.
García-Morales
and
K.
Krischer
, “
Nonlocal complex Ginzburg-Landau equation for electrochemical systems
,”
Phys. Rev. Lett.
100
,
054101
(
2008
).
16.
V.
Hakim
and
W.-J.
Rappel
, “
Dynamics of the globally coupled complex Ginzburg-Landau equation
,”
Phys. Rev. A
46
,
R7347
R7350
(
1992
).
17.
N.
Nakagawa
and
Y.
Kuramoto
, “
Collective chaos in a population of globally coupled oscillators
,”
Prog. Theor. Phys.
89
,
313
323
(
1993
).
18.
H.
Daido
and
K.
Nakanishi
, “
Aging and clustering in globally coupled oscillators
,”
Phys. Rev. E
75
,
056206
(
2007
).
19.
G. C.
Sethia
and
A.
Sen
, “
Chimera states: The existence criteria revisited
,”
Phys. Rev. Lett.
112
,
144101
(
2014
).
20.
F. P.
Kemeth
,
S. W.
Haugland
, and
K.
Krischer
, “
Symmetries of chimera states
,”
Phys. Rev. Lett.
120
,
214101
(
2018
).
21.
M.
Nandan
,
C. R.
Hens
,
P.
Pal
, and
S. K.
Dana
, “
Transition from amplitude to oscillation death in a network of oscillators
,”
Chaos
24
,
043103
(
2014
).
22.
D.
Aronson
,
G.
Ermentrout
, and
N.
Kopell
, “
Amplitude response of coupled oscillators
,”
Physica D
41
,
403
449
(
1990
).
23.
M.
Banaji
, “
Clustering in globally coupled oscillators
,”
Dyn. Syst.
17
,
263
285
(
2002
).
24.
W. L.
Ku
,
M.
Girvan
, and
E.
Ott
, “
Dynamical transitions in large systems of mean field-coupled landau-stuart oscillators: Extensive chaos and cluster states
,”
Chaos
25
,
123122
(
2015
).
25.
A.
Röhm
,
K.
Lüdge
, and
I.
Schneider
, “
Bistability in two simple symmetrically coupled oscillators with symmetry-broken amplitude- and phase-locking
,”
Chaos
28
,
063114
(
2018
).
26.
M.
Falcke
and
H.
Engel
, “
Influence of global coupling through the gas phase on the dynamics of CO oxidation on Pt(110)
,”
Phys. Rev. E
50
,
1353
1359
(
1994
).
27.
M.
Kim
,
M.
Bertram
,
M.
Pollmann
,
A. V.
Oertzen
,
A. S.
Mikhailov
,
H. H.
Rotermund
, and
G.
Ertl
, “
Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic co oxidation on pt(110)
,”
Science
292
,
1357
1360
(
2001
).
28.
M.
Bertram
,
C.
Beta
,
M.
Pollmann
,
A. S.
Mikhailov
,
H. H.
Rotermund
, and
G.
Ertl
, “
Pattern formation on the edge of chaos: Experiments with co oxidation on a pt(110) surface under global delayed feedback
,”
Phys. Rev. E
67
,
036208
(
2003
).
29.
N.
Nakagawa
and
Y.
Kuramoto
, “
From collective oscillations to collective chaos in a globally coupled oscillator system
,”
Physica D
75
,
74
80
(
1994
).
30.
N.
Nakagawa
and
Y.
Kuramoto
, “
Anomalous Lyapunov spectrum in globally coupled oscillators
,”
Physica D
80
,
307
316
(
1995
).
31.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
, “Mutual synchronization of two interacting periodic oscillators,” in Synchronization (Cambridge University Press, 2001), pp. 222–235.
32.
Y.
Kuramoto
and
I.
Nishikawa
, “
Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities
,”
J. Statist. Phys.
49
,
569
605
(
1987
).
33.
T. B.
Benjamin
and
J. E.
Feir
, “
The disintegration of wave trains on deep water part 1. Theory
,”
J. Fluid Mech.
27
,
417
(
1967
).
34.
M.
Golubitsky
and
I.
Stewart
,
The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space
(
Birkäuser Verlag
,
Basel
,
2003
).
35.
P.
Ashwin
and
J. W.
Swift
, “
The dynamics of n weakly coupled identical oscillators
,”
J. Nonlinear Sci.
2
,
69
108
(
1992
).
36.
W.
Eckhaus
, Studies in Non-Linear Stability Theory, Springer Tracts in Natural Philosophy (Springer, Berlin, 1965).
37.
L. S.
Tuckerman
and
D.
Barkley
, “
Bifurcation analysis of the Eckhaus instability
,”
Physica D
46
,
57
86
(
1990
).
38.
D.
Battogtokh
and
A.
Mikhailov
, “
Controlling turbulence in the complex Ginzburg-Landau equation
,”
Physica D
90
,
84
95
(
1996
).
39.
J. D.
Hunter
, “
Matplotlib: A 2d graphics environment
,”
Comput. Sci. Eng.
9
,
90
95
(
2007
).
You do not currently have access to this content.