We discuss the problem of breaking of a nonlinear wave in the process of its propagation into a medium at rest. It is supposed that the profile of the wave is described at the breaking moment by the function (x)1/n (x<0, positive pulse) or x1/n (x>0, negative pulse) of the coordinate x. Evolution of the wave is governed by the Korteweg-de Vries equation resulting in the formation of a dispersive shock wave. In the positive pulse case, the dispersive shock wave forms at the leading edge of the wave structure and in the negative pulse case, at its rear edge. The dynamics of dispersive shock waves is described by the Whitham modulation equations. For power law initial profiles, this dynamics is self-similar and the solution of the Whitham equations is obtained in a closed form for arbitrary n>1.

1.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
Oxford
,
1987
).
2.
R.
Courant
and
K. O.
Friedrichs
,
Supersonic Flow and Shock Waves
(
Interscience Publishers
,
New York
,
1948
).
3.
T. B.
Benjamin
and
M. J.
Lighthill
,
Proc. R. Soc. Lond. A
224
,
448
(
1954
).
4.
R. Z.
Sagdeev
,
Rev. Plasma Phys.
4
,
23
(
1966
).
5.
R. S.
Johnson
,
J. Fluid Mech.
42
,
49
60
(
1970
).
6.
D.
Riabouchinsky
,
C. R. Acad. Sci. Paris
195
,
998
(
1932
).
7.
S. A.
Akhmanov
,
A. P.
Sukhorukov
, and
R. V.
Khokhlov
,
Sov. Phys. Usp.
10
,
609
(
1968
).
8.
E. M.
Lifshitz
and
L. P.
Pitaevskii
,
Physical Kinetics
(
Pergamon
,
Oxford
,
1981
).
9.
B. I.
Halperin
and
P. C.
Hohenberg
,
Phys. Rev.
188
,
898
(
1969
).
10.
G. A.
El
and
M. A.
Hoefer
,
Physica D
333
,
11
(
2016
).
11.
A. V.
Gurevich
and
L. P.
Pitaevskii
,
Sov. Phys. JETP
38
,
291
(
1974
).
12.
G. B.
Whitham
,
Proc. Roy. Soc. London, A
283
,
238
(
1965
).
13.
G. V.
Potemin
,
Russ. Math. Surveys
43
,
39
(
1988
).
14.
B. A.
Dubrovin
and
S. P.
Novikov
,
Sov. Sci. Rev. C. Math. Phys.
9
,
1
(
1993
).
15.
A. M.
Kamchatnov
,
Nonlinear Periodic Waves and Their Modulations. An Introductory Course
(
World Scientific
,
Singapore
,
2000
).
16.
A. V.
Gurevich
,
A. L.
Krylov
, and
N. G.
Mazur
,
Sov. Phys. JETP
68
,
966
(
1989
).
17.
V. R.
Kudashev
and
S. E.
Sharapov
,
Theor. Math. Phys.
85
,
205
(
1990
).
18.
A. V.
Gurevich
,
A. L.
Krylov
,
V. V.
Khodorovskii
, and
G. A.
El
,
Sov. Phys. JETP
81
,
87
(
1995
).
19.
20.
A. V.
Gurevich
,
A. L.
Krylov
, and
G. A.
El
,
Sov. Phys. JETP
74
,
957
(
1992
).
21.
O.
Wright
,
Commun. Pure Appl. Math.
46
,
421
(
1993
).
22.
F. R.
Tian
,
Commun. Pure Appl. Math.
46
,
1093
(
1993
).
23.
E. T.
Whittaker
and
G. N.
Watson
,
A Course of Modern Analysis
(
Cambridge University Press
,
Cambridge
,
1927
).
24.
R. N.
Garifullin
and
B. I.
Suleimanov
,
J. Exp. Theor. Phys.
110
,
133
(
2010
).
25.
M. A.
Hoefer
,
M. J.
Ablowitz
,
I.
Coddington
,
E. A.
Cornell
,
P.
Engels
, and
V.
Schweikhard
,
Phys. Rev. A
74
,
023623
(
2006
).
26.
W.
Wan
,
S.
Jia
, and
J. W.
Fleischer
,
Nature Phys.
3
,
46
(
2007
).
27.
V.
Kudashev
and
B.
Suleimanov
,
Phys. Lett. A
221
,
204
(
1996
).
28.
B.
Dubrovin
,
Commun. Math. Phys.
267
,
117
(
2006
).
29.
30.
A. M.
Kamchatnov
,
Phys. Rev. E
99
,
012203
(
2019
).
You do not currently have access to this content.