For a wide class of stationary time series, extreme value theory provides limiting distributions for rare events. The theory describes not only the size of extremes but also how often they occur. In practice, it is often observed that extremes cluster in time. Such short-range clustering is also accommodated by extreme value theory via the so-called extremal index. This review provides an introduction to the extremal index by working through a number of its intuitive interpretations. Thus, depending on the context, the extremal index may represent (i) the loss of independently and identically distributed degrees of freedom, (ii) the multiplicity of a compound Poisson point process, and (iii) the inverse mean duration of extreme clusters. More recently, the extremal index has also been used to quantify (iv) recurrences around unstable fixed points in dynamical systems.

1.
D.
Barriopedro
,
E. M.
Fischer
,
J.
Luterbacher
,
R. M.
Trigo
, and
R.
García-Herrera
, “
The hot summer of 2010: Redrawing the temperature record map of Europe
,”
Science
332
(
6026
),
220
224
(
2011
).
2.
G. K.
Basak
and
K. R.
Ho
, “
Level-crossing probabilities and first-passage times for linear processes
,”
Adv. Appl. Probab.
36
,
643
666
(
2004
).
3.
J.
Beirlant
,
Y.
Goegebeur
,
J.
Segers
, and
J. L.
Teugels
,
Statistics of Extremes: Theory and Applications
(
John Wiley & Sons Inc.
,
2004
).
4.
S. M.
Berman
, “
Limit theorems for the maximum term in stationary sequences
,”
Ann. Math. Stat.
35
,
502
516
(
1964
).
5.
R.
Blender
,
C. C.
Raible
, and
F.
Lunkeit
, “
Non-exponential return time distributions for vorticity extremes explained by fractional Poisson processes
,”
Q. J. R. Meteorol. Soc.
141
,
249
257
(
2015
).
6.
B. B.
Brabson
and
J. P.
Palutikof
, “
Tests of the generalized Pareto distribution for predicting extreme wind speeds
,”
J. Appl. Meteorol.
39
,
1627
1640
(
2000
).
7.
A.
Bunde
,
J. F.
Eichner
,
J. W.
Kantelhardt
, and
S.
Havlin
, “
Long-term memory: A natural mechanism for the clustering of extreme events and anomalous residual times in climate records
,”
Phys. Rev. Lett.
94
,
048701
(
2005
).
8.
S.
Coles
,
An Introduction to Statistical Modeling of Extreme Values
(
Springer-Verlag
,
London
,
2001
).
9.
S. G.
Coles
,
J. A.
Tawn
, and
R. L.
Smith
, “
A seasonal Markov model for extremely low temperatures
,”
Environmetrics
5
,
221
239
(
1994
).
10.
P.
Collet
, “
Statistics of closest return for some non-uniformly hyperbolic systems
,”
Ergod. Theory Dyn. Syst.
21
(
2
),
401
420
(
2001
).
11.
A.
Corral
, “
Point-occurrence self-similarity in crackling-noise systems and in other complex systems
,”
J. Stat. Mech.
2009
,
P01022
.
12.
A.
Corral
, “
Scaling in the timing of extreme events
,”
Chaos Solitons Fractals
74
,
99
112
(
2015
).
13.
D.
Coumou
and
S.
Rahmstorf
, “
A decade of weather extremes
,”
Nat. Clim. Change
2
(
7
),
491
496
(
2012
).
14.
D. R.
Cox
and
V.
Isham
,
Point Processes
(
Chapman and Hall
,
London, New York
,
1980
).
15.
P.
Craig
, “
A new reconstruction of multivariate normal orthant probabilities
,”
J. R. Stat. Soc. B
70
,
227
243
(
2008
).
16.
L.
de Haan
and
A.
Ferreira
,
Extreme Value Theory: An Introduction
(
Springer
,
New York
,
2006
).
17.
E.
Di Nardo
, “
On the first passage time problem for linear processes
,”
Sci. Math. Japonica
21
,
61
76
(
2008
).
18.
J. F.
Eichner
,
J. W.
Kantelhardt
,
A.
Bunde
, and
S.
Havlin
, “
Statistics of return intervals in long-term correlated records
,”
Phys. Rev. E
75
,
011128
(
2007
).
19.
P.
Embrechts
,
C.
Klüppelberg
, and
T.
Mikosch
,
Modelling Extremal Events for Insurance and Finance
(
Springer-Verlag
,
Berlin, Heidelberg
,
1997
).
20.
M.
Falk
,
J.
Hüsler
, and
R.-D.
Reiss
,
Laws of Small Numbers: Extremes and Rare Events
, 2nd ed. (
Birkäuser Verlag
,
Basel, Boston, Berlin
,
2004
).
21.
B.
Fang
,
S.
Guo
,
S.
Wang
,
P.
Liu
, and
Y.
Xiao
, “
Non-identical models for seasonal flood frequency analysis
,”
Hydrol. Sci. J.
52
,
974
991
(
2007
).
22.
D.
Faranda
,
H.
Ghoudi
,
P.
Guiraud
, and
S.
Vaienti
, “
Extreme value theory for synchronization of coupled map lattices
,”
Nonlinearity
31
(
7
),
3326
(
2018
).
23.
D.
Faranda
,
V.
Lucarini
,
G.
Turchetti
, and
S.
Vaienti
, “
Numerical convergence of the block-maxima approach to the generalized extreme value distribution
,”
J. Stat. Phys.
145
(
5
),
1156
1180
(
2011
).
24.
D.
Faranda
,
G.
Masato
,
N.
Moloney
,
Y.
Sato
,
F.
Daviaud
,
B.
Dubrulle
, and
P.
Yiou
, “
The switching between zonal and blocked mid-latitude atmospheric circulation: A dynamical system perspective
,”
Clim. Dyn.
47
,
1587
(
2016
).
25.
D.
Faranda
,
G.
Messori
,
M. C.
Alvarez-Castro
, and
P.
Yiou
, “
Dynamical properties and extremes of northern hemisphere climate fields over the past 60 years
,”
Nonlin. Processes Geophys.
24
(
4
),
713
725
(
2017
).
26.
D.
Faranda
,
G.
Messori
, and
P.
Yiou
, “
Dynamical proxies of North Atlantic predictability and extremes
,”
Sci. Rep.
7
,
41278
(
2017
).
27.
D.
Faranda
and
S.
Vaienti
, “
Correlation dimension and phase space contraction via extreme value theory
,”
Chaos
28
(
4
),
041103
(
2018
).
28.
M.
Ferreira
, “
Heuristic tools for the estimation of the extremal index: A comparison of methods
,”
RevStat
16
,
115
136
(
2018
).
29.
C. A. T.
Ferro
and
J.
Segers
, “
Inference for clusters of extreme values
,”
J. R. Stat. Soc. B
65
,
545
556
(
2003
).
30.
R. A.
Fisher
and
L. H. C.
Tippett
, “
Limiting forms of the frequency distribution of the largest or smallest member of a sample
,”
Proc. Camb. Philos. Soc.
24
,
180
190
(
1928
).
31.
C. L. E.
Franzke
, “
Extremes in dynamic-stochastic systems
,”
Chaos
27
,
012101
(
2017
).
32.
C. L. E.
Franzke
,
S. M.
Osprey
,
P.
Davini
, and
N. W.
Watkins
, “
A dynamical systems explanation of the Hurst effect and atmospheric low-frequency variability
,”
Sci. Rep.
5
,
9068
(
2015
).
33.
A. C. M.
Freitas
,
J. M.
Freitas
, and
M.
Todd
, “
Hitting time statistics and extreme value theory
,”
Probab. Theory Relat. Fields
147
(
3
),
675
710
(
2010
).
34.
A. C. M.
Freitas
,
J. M.
Freitas
, and
M.
Todd
, “
The extremal index, hitting time statistics and periodicity
,”
Adv. Math.
231
(
5
),
2626
2665
(
2012
).
35.
J. M.
Freitas
, “
Extremal behaviour of chaotic dynamics
,”
Dyn. Syst.
28
,
302
332
(
2013
).
36.
M.
Ghil
,
P.
Yiou
,
S.
Hallegatte
,
B. D.
Malamud
,
P.
Naveau
,
A.
Soloviev
,
P.
Friederichs
,
V.
Keilis-Borok
,
D.
Kondrashov
,
V.
Kossobokov
,
O.
Mestre
,
C.
Nicolis
,
H. W.
Rust
,
P.
Shebalin
,
M.
Vrac
,
A.
Witt
, and
I.
Zaliapin
, “
Extreme events: Dynamics, statistics and prediction
,”
Nonlin. Processes Geophys.
18
(
3
),
295
350
(
2011
).
37.
K.
Giamalaki
,
C.
Beaulieu
,
D.
Faranda
,
S.
Henson
,
S.
Josey
, and
A.
Martin
, “
Signatures of the 1976-77 regime shift in the North Pacific revealed by statistical analysis
,”
J. Geophys. Res., [Oceans]
123
,
4388
4397
, https://doi.org/10.1029/2017JC013718 (
2018
).
38.
B. V.
Gnedenko
, “
Sur la distribution limite du terme maximum d’une série aléatiore
,”
Ann. Math.
44
,
423
453
(
1943
).
39.
V.
Isham
, “
Dependent thinning of point processes
,”
J. Appl. Probab.
17
,
987
995
(
1980
).
40.
O.
Kallenberg
,
Foundations of Modern Probability
, 2nd ed. (
Springer-Verlag
,
New York, Berlin, Heidelberg
,
2002
).
41.
R. W.
Katz
,
M. B.
Parlange
, and
P.
Naveau
, “
Statistics of extremes in hydrology
,”
Adv. Water Resour.
25
,
1287
1304
(
2002
).
42.
M. R.
Leadbetter
,
G.
Lindgren
, and
H.
Rootzén
,
Extremes and Related Properties of Random Sequences and Processes
(
Springer-Verlag
,
New York, Heidelberg, Berlin
,
1983
).
43.
V.
Lucarini
,
D.
Faranda
,
J. M. M.
de Freitas
,
M.
Holland
,
T.
Kuna
,
M.
Nicol
,
M.
Todd
,
S.
Vaienti
et al.,
Extremes and Recurrence in Dynamical Systems
(
John Wiley & Sons
,
2016
).
44.
V.
Lucarini
,
D.
Faranda
,
G.
Turchetti
, and
S.
Vaienti
, “
Extreme value theory for singular measures
,”
Chaos
22
(
2
),
023135
(
2012
).
45.
V.
Lucarini
,
D.
Faranda
, and
J.
Wouters
, “
Universal behaviour of extreme value statistics for selected observables of dynamical systems
,”
J. Stat. Phys.
147
(
1
),
63
73
(
2012
).
46.
Y.
Malevergne
,
V.
Pisarenko
, and
D.
Sornette
, “
On the power of generalized extreme value (GEV) and generalized Pareto distribution (GPD) estimators for empirical distributions of stock returns
,”
Appl. Fin. Econ.
16
(
3
),
271
289
(
2006
).
47.
A. J.
McNeil
,
R.
Frey
, and
P.
Embrechts
,
Quantitative Risk Management: Concepts, Techniques and Tools
(
Princeton University Press
,
2015
).
48.
V.
Pisarenko
and
D.
Sornette
, “
Characterization of the frequency of extreme earthquake events by the generalized pareto distribution
,”
Pure Appl. Geophys.
160
(
12
),
2343
2364
(
2003
).
49.
A.
Rényi
, “
A characterization of Poisson processes
,”
Magyar Tud. Akad. Mat. Kutató Int. K”ozl.
1
,
519
527
(
1956
).
50.
M. S.
Santhanam
and
H.
Kantz
, “
Return interval distribution of extreme events and long-term memory
,”
Phys. Rev. E
78
,
051113
(
2008
).
51.
A.
Smith
and
R.
Katz
, “
US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases
,”
Nat. Hazards
67
,
387
410
(
2013
).
52.
R. L.
Smith
and
I.
Weissman
, “
Estimating the extremal index
,”
J. R. Stat. Soc. B
56
,
515
528
(
1994
).
53.
A.
Smolka
, “
Natural disasters and the challenge of extreme events: Risk management from an insurance perspective
,”
Philos. Trans. R. Soc. A
364
(
1845
),
2147
2165
(
2006
).
54.
M.
Süveges
, “
Likelihood estimation of the extremal index
,”
Extremes
10
,
41
55
(
2007
).
55.
N.
Vercauteren
,
V.
Boyko
,
D.
Faranda
, and
I.
Stiperski
, “Scale interactions and anisotropy in stable boundary layers,” e-print: preprint arXiv:1809.07031 (2018).
56.
M.
Westcott
, “
Simple proof of a result on thinned point processes
,”
Ann. Probab.
4
,
89
90
(
1976
).
57.
L.-S.
Young
, “
Dimension, entropy and Lyapunov exponents
,”
Ergod. Theory Dyn. Syst.
2
(
1
),
109
124
(
1982
).
You do not currently have access to this content.