The entrainment between weakly coupled nonlinear oscillators, as well as between complex signals such as those representing physiological activity, is frequently assessed in terms of whether a stable relationship is detectable between the instantaneous phases extracted from the measured or simulated time-series via the analytic signal. Here, we demonstrate that adding a possibly complex constant value to this normally null-mean signal has a non-trivial warping effect. Among other consequences, this introduces a level of sensitivity to the amplitude fluctuations and average relative phase. By means of simulations of Rössler systems and experiments on single-transistor oscillator networks, it is shown that the resulting coherence measure may have an empirical value in improving the inference of the structural couplings from the dynamics. When tentatively applied to the electroencephalogram recorded while performing imaginary and real movements, this straightforward modification of the phase locking value substantially improved the classification accuracy. Hence, its possible practical relevance in brain-computer and brain-machine interfaces deserves consideration.

1.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators
,”
Phys. Rev. Lett.
76
,
1804
(
1996
).
2.
S.
Boccaletti
,
J.
Kurths
,
G.
Osipov
,
D. L.
Valladares
, and
C. S.
Zhou
, “
The synchronization of chaotic systems
,”
Phys. Rep.
366
,
1
(
2002
).
3.
S.
Boccaletti
,
A. N.
Pisarchik
,
C.I.
del Genio
, and
A.
Amann
,
Synchronization: From Coupled Systems to Complex Networks
(
Cambridge University Press
,
Cambridge
,
2018
).
4.
G. V.
Osipov
,
B.
Hu
,
Ch.
Zhou
,
M. V.
Ivanchenko
, and
J.
Kurths
, “
Three types of transition to phase synchronization in coupled chaotic oscillators
,”
Phys. Rev. Lett.
91
,
024101
(
2003
).
5.
C. K.
Kovach
, “
A biased look at phase locking: Brief critical review and proposed remedy
,”
IEEE Trans. Signal Process.
65
,
4468
(
2017
).
6.
K. Q.
Lepage
and
S.
Vijayan
, “
The relationship between coherence and the phase-locking value
,”
J. Theor. Biol.
435
,
106
(
2017
).
7.
E.
Lowet
,
M. J.
Roberts
,
P.
Bonizzi
,
J.
Karel
, and
P.
De Weerd
, “
Quantifying neural oscillatory synchronization: A comparison between spectral coherence and phase-locking value approaches
,”
PLoS One
11
,
e0146443
(
2016
).
8.
J.
García-Prieto
,
R.
Bajo
, and
E.
Pereda
, “
Efficient computation of functional brain networks: Toward real-time functional connectivity
,”
Front. Neuroinform.
11
,
8
(
2017
).
9.
C.
Brunner
,
R.
Scherer
,
B.
Graimann
,
G.
Supp
, and
G.
Pfurtscheller
, “
Online control of a brain-computer interface using phase synchronization
,”
IEEE Trans. Biomed. Eng.
53
,
2501
(
2016
).
10.
A. I.
Sburlea
,
L.
Montesano
, and
J.
Minguez
, “
Advantages of EEG phase patterns for the detection of gait intention in healthy and stroke subjects
,”
J. Neural Eng.
14
,
036004
(
2017
).
11.
B.
Boashash
, “
Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications
,”
Proc. IEEE
80
,
540
(
1992
).
12.
L. V.
Gambuzza
,
J.
Gómez-Gardeñes
, and
M.
Frasca
, “
Amplitude dynamics favors synchronization in complex networks
,”
Sci. Rep.
6
,
24915
(
2016
).
13.
A.
Pikovsky
,
M.
Rosenblum
,
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge
,
2001
).
14.
R. T.
Canolty
and
R. T.
Knight
, “
The functional role of cross-frequency coupling
,”
Trends Cogn. Sci.
14
,
506
(
2010
).
15.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett.
57
,
397
(
1976
).
16.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
Cambridge
,
2002
).
17.
G.
Tirabassi
,
R.
Sevilla-Escoboza
,
J. M.
Buldú
, and
C.
Masoller
, “
Inferring the connectivity of coupled oscillators from time-series statistical similarity analysis
,”
Sci. Rep.
5
,
10829
(
2015
).
18.
M.
Timme
and
J.
Casadiego
, “
Revealing networks from dynamics: An introduction
,”
J. Phys. A. Math. Theor.
47
,
343001
(
2014
).
19.
N.
Rubido
,
A. C.
Martí
,
E.
Bianco-Martínez
,
C.
Grebogi
,
M. S.
Baptista
, and
C.
Masoller
, “
Exact detection of direct links in networks of interacting dynamical units
,”
New J. Phys.
16
,
093010
(
2014
).
20.
L.
Minati
, “
Experimental dynamical characterization of five autonomous chaotic oscillators with tunable series resistance
,”
Chaos
24
,
033110
(
2014
).
21.
L.
Minati
, “
Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators
,”
Chaos
25
,
033107
(
2015
).
22.
See http://www.lminati.it/listing/2018/c/ for the experimental time-series.
23.
D.
Chicharro
and
R. G.
Andrzejak
, “
Reliable detection of directional couplings using rank statistics
,”
Phys. Rev. E
80
,
026217
(
2009
).
24.
L.
Paninski
, “
Estimation of entropy and mutual information
,”
Neural Comput.
15
,
1191
(
2003
).
25.
L.
Faes
,
G.
Nollo
, and
K. H.
Chon
, “
Assessment of Granger causality by nonlinear model identification: Application to short-term cardiovascular variability
,”
Ann. Biomed. Eng.
36
,
381
(
2008
).
26.
L. M.
Alonso-Valerdi
,
R. A.
Salido-Ruiz
, and
R. A.
Ramirez-Mendoza
, “
Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits
,”
Neuropsychologia
79
,
354
(
2015
).
27.
X.
Li
,
D.
Li
,
L. J.
Voss
, and
J. W.
Sleigh
, “
The comodulation measure of neuronal oscillations with general harmonic wavelet bicoherence and application to sleep analysis
,”
Neuroimage
48
,
501
(
2009
).
28.
A. L.
Goldberger
,
L. A. N.
Amaral
,
L.
Glass
,
J. M.
Hausdorff
,
P. Ch.
Ivanov
,
R. G.
Mark
,
J. E.
Mietus
,
G. B.
Moody
,
C.-K.
Peng
, and
H. E.
Stanley
, “
PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
,”
Circulation
101
,
e215
(
2000
).
29.
G.
Schalk
,
D. J.
McFarland
,
T.
Hinterberger
,
N.
Birbaumer
, and
J. R.
Wolpaw
, “
BCI2000: A general-purpose brain-computer interface (BCI) system
,”
IEEE Trans. Biomed. Eng.
51
,
1034
(
2004
).
31.
A. S.
Aghaei
,
M. S.
Mahanta
, and
K. N.
Plataniotis
, “
Separable common spatio-spectral patterns for motor imagery BCI systems
,”
IEEE Trans. Biomed. Eng.
63
,
15
(
2016
).
32.
C.
Neuper
and
G.
Pfurtscheller
, “
Evidence for distinct beta resonance frequencies in human EEG related to specific sensorimotor cortical areas
,”
Clin. Neurophysiol.
112
,
2084
(
2001
).
33.
F.
Chella
,
V.
Pizzella
,
F.
Zappasodi
, and
L.
Marzetti
, “
Impact of the reference choice on scalp EEG connectivity estimation
,”
J. Neural Eng.
13
,
036016
(
2016
).
34.
O.
Yamashita
,
M. A.
Sato
,
T.
Yoshioka
,
F.
Tong
, and
Y.
Kamitani
, “
Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns
,”
Neuroimage
42
,
1414
(
2008
).
35.
W.
Jian
,
M.
Chen
, and
D. J.
McFarland
, “
EEG based zero-phase phase-locking value (PLV) and effects of spatial filtering during actual movement
,”
Brain Res. Bull.
130
,
156
(
2017
).
36.
R.
Bruña
,
F.
Maestú
, and
E.
Pereda
, “
Phase locking value revisited: Teaching new tricks to an old dog
,”
J. Neural Eng.
15
,
056011
(
2018
).
37.
D. J.
McFarland
,
L. A.
Miner
,
T. M.
Vaughan
, and
J. R.
Wolpaw
, “
Mu and beta rhythm topographies during motor imagery and actual movements
,”
Brain Topogr.
12
,
177
(
2000
).
38.
M.
Ahn
and
S. C.
Jun
, “
Performance variation in motor imagery brain-computer interface: A brief review
,”
J. Neurosci. Methods
243
,
103
(
2015
).
39.
T.
Schreiber
and
A.
Schmitz
, “
Improved surrogate data for nonlinearity tests
,”
Phys. Rev. Lett.
77
,
635
(
1996
).
40.
N.
Yoshimura
,
A.
Nishimoto
,
A. N.
Belkacem
,
D.
Shin
,
H.
Kambara
,
T. S.
Hanakawa
, and
Y.
Koike
, “
Decoding of covert vowel articulation using electroencephalography cortical currents
,”
Front. Neurosci.
10
,
175
(
2016
).
You do not currently have access to this content.