Network physiology describes the human body as a complex network of interacting organ systems. It has been applied successfully to determine topological changes in different sleep stages. However, the number of network links can quickly grow above the number of parameters that are typically analyzed with standard statistical methods. Artificial Neural Networks (ANNs) are a promising approach as they are successful in large parameter spaces, such as in digital imaging. On the other hand, ANN models do not provide an intrinsic approach to interpret their predictions, and they typically require large training data sets. Both aspects are critical in biomedical research. Medical decisions need to be explainable, and large data sets of quality assured patient and control data are rare. In this paper, different models for the classification of insomnia—a common sleep disorder—have been trained with 59 patients and age and gender matched controls, based on their physiological networks. Feature relevance evaluation is employed for all methods. For ANNs, the extrinsic interpretation method DeepLift is applied. The results are not identical across methods, but certain network links have been rated as relevant by all or most of the models. While ANNs show less classification accuracy (0.89) than advanced tree-based models (0.92 and 0.93), DeepLift provides an in-depth ANN interpretation with feature relevance scores for individual data samples. The analysis revealed modifications in the pulmonar, ocular, and cerebral subnetworks that have not been described before but are consistent with known findings on the physiological impact of insomnia.

1.
CASyM Consortium
,
The Casym Roadmap Implementation of Systems Medicine Across Europe
(
CASyM
,
2017
).
2.
P. C.
Ivanov
,
K. K. L.
Liu
, and
R. P.
Bartsch
, “
Focus on the emerging new fields of network physiology and network medicine
,”
New J. Phys.
18
,
100201
(
2016
).
3.
L.
Faes
,
D.
Marinazzo
,
S.
Stramaglia
,
F.
Jurysta
,
A.
Porta
, and
N.
Giandomenico
, “
Predictability decomposition detects the impairment of brain–heart dynamical networks during sleep disorders and their recovery with treatment
,”
Phil. Trans. R. Soc. A
374
,
20150177
(
2016
).
4.
M.
Riedl
,
A.
Müller
,
J. F.
Kraemer
,
T.
Penzel
,
J.
Kurths
, and
N.
Wessel
, “
Cardio-respiratory coordination increases during sleep apnea
,”
PLoS ONE
9
,
e93866
(
2014
).
5.
A.
Bashan
,
R. P.
Bartsch
,
J. W.
Kantelhardt
,
S.
Havlin
, and
P. C.
Ivanov
, “
Network physiology reveals relations between network topology and physiological function
,”
Nat. Commun.
3
,
702
(
2012
).
6.
R. B.
Berry
,
R.
Brooks
,
C. E.
Gamaldo
,
S. M.
Harding
,
R. M.
Lloyd
,
C. L.
Marcus
,
B. V.
Vaughn
, and
for the American Academy of Sleep Medicine
, “The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specifications. Version 2.4,” Technical report, Institution American Academy of Sleep Medicine, 2017.
7.
D.
Krefting
,
C.
Jansen
,
T.
Penzel
,
F.
Han
, and
J.
Kantelhardt
, “
Age and gender dependency of physiological networks in sleep
,”
Physiol. Meas.
38
,
959
975
(
2017
).
8.
T.
Roth
, “
Insomnia: Definition, prevalence, etiology, and consequences
,”
J. Clin. Sleep Med.
3
,
7
10
(
2007
).
9.
NIHSSCS
, “
National Institutes of Health State of the Science Conference Statement: Manifestations and management of chronic insomnia in adults June 13–15, 2005
,”
Sleep
28
,
1049
1057
(
2005
).
10.
M. H.
Bonnet
and
D. L.
Arand
, “
Hyperarousal and insomnia: State of the science
,”
Sleep Med. Rev.
14
,
9
15
(
2010
).
11.
D.
Riemann
,
K.
Spiegelhalder
,
B.
Feige
,
U.
Voderholzer
,
M.
Berger
,
M.
Perlis
, and
C.
Nissen
, “
The hyperarousal model of insomnia: A review of the concept and its evidence
,”
Sleep Med. Rev.
14
,
19
31
(
2010
).
12.
H.
Dvir
,
I.
Elbaz
,
S.
Havlin
,
L.
Appelbaum
,
P. C.
Ivanov
, and
R. P.
Bartsch
, “
Neuronal noise as an origin of sleep arousals and its role in sudden infant death syndrome
,”
Sci. Adv.
4
,
eaar6277
(
2018
).
13.
H.
Dvir
,
J. W.
Kantelhardt
,
M.
Zinkhan
,
F.
Pillmann
,
A.
Szentkiralyi
,
A.
Obst
,
W.
Ahrens
, and
R. P.
Bartsch
, “
A biased diffusion approach to sleep dynamics reveals neuronal characteristics
,”
Biophys. J.
117
,
987
997
(
2019
).
14.
R. P.
Bartsch
,
K. K. L.
Liu
,
A.
Bashan
, and
P. C.
Ivanov
, “
Network physiology: How organ systems dynamically interact
,”
PLoS ONE
10
,
e0142143
(
2015
).
15.
S.
Bach
,
A.
Binder
,
G.
Montavon
,
F.
Klauschen
,
K.-R.
Müller
, and
W.
Samek
, “
On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
,”
PLoS ONE
10
,
1
46
(
2015
).
16.
M. T.
Ribeiro
,
S.
Singh
, and
C.
Guestrin
, “‘Why should I trust you?’: Explaining the predictions of any classifier,” in
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, 97–101, San Diego, California
(Association for Computational Linguistics, 2016).
17.
A.
Shrikumar
,
P.
Greenside
, and
A.
Kundaje
, “Learning important features through propagating activation differences,” in Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017 (JMLR, Cambridge, MA, 2017), pp. 3145–3153.
18.
C.
Jansen
,
S.
Hodel
,
T.
Penzel
,
M.
Spott
, and
D.
Krefting
, “
Feature relevance in physiological networks for classification of obstructive sleep apnea
,”
Physiol. Meas.
39
,
124003
(
2018
).
19.
Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine
, “
Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults
,”
J. Clin. Sleep Med.
5
,
263
276
(
2009
).
20.
D.
Riemann
,
C.
Baglioni
,
C.
Bassetti
,
B.
Bjorvatn
,
L. D.
Groselj
,
J. G.
Ellis
,
C. A.
Espie
,
D.
Garcia-Borreguero
,
M.
Gjerstad
,
M.
Goncalves
,
E.
Hertenstein
,
M.
Jansson-Froejmark
,
P. J.
Jennum
,
D.
Leger
,
C.
Nissen
,
L.
Parrino
,
T.
Paunio
,
D.
Pevernagie
,
J.
Verbraecken
,
H.-G.
Weess
,
A.
Wichniak
,
I.
Zavalko
,
E. S.
Arnardottir
,
O.-C.
Deleanu
,
B.
Strazisar
,
M.
Zoetmulder
, and
K.
Spiegelhalder
, “
European guideline for the diagnosis and treatment of insomnia
,”
J. Sleep Res.
26
,
675
700
(
2017
).
21.
G.
Klösch
,
B.
Kemp
,
T.
Penzel
,
A.
Schlögl
,
P.
Rappelsberger
,
E.
Trenker
,
G.
Gruber
,
J.
Zeitlhofer
,
B.
Saletu
,
W.
Herrmann
,
S.
Himanen
,
D.
Kunz
,
M.
Barbanoj
,
J.
Röschke
,
A.
Värri
, and
G.
Dorffner
, “
The SIESTA project polygraphic and clinical database
,”
IEEE Eng. Med. Biol. Mag.
20
,
51
57
(
2001
).
22.
R.
Schneider
,
A.
Bauer
,
P.
Barthel
, and
G.
Schmidt
, “libRASCH—A programming framework for transparent access to physiological signals,” in 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004, IEMBS ’04 (IEEE, 2004), Vol. 2, pp. 3254–3257.
23.
D.
Krefting
,
H.
Loose
, and
T.
Penzel
, “
Employment of a healthgrid for evaluation and development of polysomnographic biosignal processing methods
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
1
,
268
271
(
2010
).
24.
F.
Chollet
,
Keras
(
GitHub
,
2015
).
25.
See https://github.com/kundajelab/deeplift for information and source code of the DeepLift implementation.
26.
N.
Srivastava
,
G.
Hinton
,
A.
Krizhevsky
,
I.
Sutskever
, and
R.
Salakhutdinov
, “
Dropout: A simple way to prevent neural networks from overfitting
,”
J. Mach. Learn. Res.
15
,
1929
1958
(
2014
), http://jmlr.org/papers/v15/srivastava14a.html
27.
G.
James
,
D.
Witten
,
T.
Hastie
, and
R.
Tibshirani
, “Tree-based methods,” in An Introduction to Statistical Learning: With Applications in R (Springer, New York, 2013), pp. 303–335.
28.
See https://cran.r-project.org/package=tree for information about the tree package used for Decision Trees.
29.
See https://cran.r-project.org/package=rpart for information about the rpart package used for Decision Trees.
30.
See https://cran.r-project.org/web/packages/rpart/rpart.pdf for information about the implementation parameters of the Decision Trees.
31.
L.
Breiman
, “
Random forests
,”
Mach. Learn.
45
,
5
32
(
2001
).
32.
A.
Liaw
and
M.
Wiener
, “
Classification and regression by randomforest
,”
R News
2
,
18
22
(
2002
), https://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf
33.
See https://cran.r-project.org/web/packages/randomForest/randomForest.pdf for information about the randomForest package used for Random Forests.
34.
J. H.
Friedman
, “
Stochastic gradient boosting
,”
Comput. Stat. Data Anal.
38
,
367
378
(
2002
).
35.
See https://topepo.github.io/caret/variable-importance.html for information about the caret package used for Gradient Boosted Machines.
36.
J. L.
Fleiss
, “
Measuring nominal scale agreement among many raters
,”
Psychol. Bull.
76
,
378
(
1971
).
37.
E.
Maris
and
R.
Oostenveld
, “
Nonparametric statistical testing of EEG- and MEG-data
,”
J. Neurosci. Methods
164
,
177
190
(
2007
).
38.
E. M.
Wickwire
and
N. A.
Collop
, “
Insomnia and sleep-related breathing disorders
,”
Chest
137
,
1449
1463
(
2010
).
39.
J. R.
Stradling
,
G. A.
Chadwick
, and
A. J.
Frew
, “
Changes in ventilation and its components in normal subjects during sleep
,”
Thorax
40
,
364
370
(
1985
).
40.
M.
Tamaki
,
J. W.
Bang
,
T.
Watanabe
, and
Y.
Sasaki
, “
Night watch in one brain hemisphere during sleep associated with the first-night effect in humans
,”
Curr. Biol.
26
,
1190
1194
(
2016
).
41.
M.
Rezaei
,
H.
Mohammadi
, and
H.
Khazaie
, “
EEG/EOG/EMG data from a cross sectional study on psychophysiological insomnia and normal sleep subjects
,”
Data Brief
15
,
314
(
2017
).
You do not currently have access to this content.