The role of counter-rotating oscillators in an ensemble of coexisting co- and counter-rotating oscillators is examined by increasing the proportion of the latter. The phenomenon of aging transition was identified at a critical value of the ratio of the counter-rotating oscillators, which was otherwise realized only by increasing the number of inactive oscillators to a large extent. The effect of the mean-field feedback strength in the symmetry preserving coupling is also explored. The parameter space of aging transition was increased abruptly even for a feeble decrease in the feedback strength, and, subsequently, aging transition was observed at a critical value of the feedback strength surprisingly without any counter-rotating oscillators. Further, the study was extended to symmetry breaking coupling using conjugate variables, and it was observed that the symmetry breaking coupling can facilitate the onset of aging transition even in the absence of counter-rotating oscillators and for the unit value of the feedback strength. In general, the parameter space of aging transition was found to increase by increasing the frequency of oscillators and by increasing the proportion of the counter-rotating oscillators in both symmetry preserving and symmetry breaking couplings. Further, the transition from oscillatory to aging occurs via a Hopf bifurcation, while the transition from aging to oscillation death state emerges via the pitchfork bifurcation. Analytical expressions for the critical ratio of the counter-rotating oscillators are deduced to find the stable boundaries of the aging transition.

1.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer-Verlag
,
Berlin, Heidelberg
,
1984
).
2.
R.
Toth
,
A. F.
Taylor
, and
M. R.
Tinsley
,
J. Phys. Chem. B
110
,
10170
10176
(
2006
).
3.
J.
Sawicki
,
I.
Omelchenko
,
A.
Zakharova
, and
E.
Schöll
,
Euro. Phys. J. B
92
,
54
(
2019
).
4.
S.
Majhi
,
B. K.
Bera
,
D.
Ghosh
, and
M.
Perc
,
Phys. Life Rev.
28
,
100
121
(
2019
).
5.
A.
Pikovsky
,
M. G.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge
,
2001
).
6.
S.
Gupta
,
A.
Campa
, and
S.
Ruffo
,
Statistical Physics of Synchronization, Springer Briefs in Complexity
(
Springer International Publishing
,
2018
).
7.
M.
Panaggio
and
D. M.
Abrams
,
Nonlinearity
28
,
R67
R87
(
2015
).
8.
A.
Zakharova
,
M.
Kapeller
, and
E.
Schöll
,
Phys. Rev. Lett.
112
,
154101
(
2014
).
9.
I.
Omelchenko
,
A.
Provata
,
J.
Hizanidis
,
E.
Schöll
, and
P.
Hövel
,
Phys. Rev. E
91
,
022917
(
2015
).
10.
E.
Schöll
,
Eur. Phys. J. Spec. Top.
225
,
891
919
(
2016
).
11.
K.
Sathiyadevi
,
V. K.
Chandrasekar
, and
D. V.
Senthilkumar
,
Phys. Rev. E
98
,
032301
(
2018
).
12.
S.
Ghosh
,
A.
Zakharova
, and
S.
Jalan
,
Chaos Solitons Fractals
106
,
56
60
(
2018
).
13.
S.
Gil
,
Y.
Kuramoto
, and
A. S.
Mikhailov
,
Europhys. Lett.
88
,
60005
(
2009
).
14.
K.
Sathiyadevi
,
V. K.
Chandrasekar
,
D. V.
Senthilkumar
, and
M.
Lakshmanan
,
Phys. Rev. E
97
,
032207
(
2018
).
15.
G.
Saxena
,
A.
Prasada
, and
R.
Ramaswamy
,
Phys. Rep.
521
,
205
228
(
2012
).
16.
A.
Koseska
,
E.
Volkov
, and
J.
Kurths
,
Phys. Rep.
531
,
173
199
(
2013
).
17.
T.
Banerjee
and
D.
Ghosh
,
Phys. Rev. E
89
(
5
),
052912
(
2014
).
18.
I.
Schneider
,
M.
Kapeller
,
S.
Loos
,
A.
Zakharova
,
B.
Fiedler
, and
E.
Schöll
,
Phys. Rev. E
92
,
052915
(
2015
).
19.
W.
Zou
,
M.
Zhan
, and
J.
Kurths
,
Phys. Rev. E
98
,
062209
(
2018
).
20.
V.
Resmi
,
G.
Ambika
, and
R. E.
Amritkar
,
Phys. Rev. E
84
,
046212
(
2011
).
21.
A.
Sharma
,
P. R.
Sharma
, and
M. D.
Shrimali
,
Phys. Lett. A
376
,
1562
1566
(
2012
).
22.
H.
Daido
and
K.
Nakanishi
,
Phys. Rev. Lett.
93
,
10
(
2004
).
23.
L.
Ambrogioni
,
M. A. J.
vanGerven
, and
E.
Maris
,
PLoS Comput. Biol.
13
(
5
),
e1005540
(
2017
).
24.
S.
Atasoy
,
L.
Roseman
,
M.
Kaelen
,
M. L.
Kringelbach
,
G.
Deco
, and
R. L.
Carhart-Harris
,
Sci. Rep.
7
,
17661
(
2017
).
25.
C. L.
DeMarco
,
IEEE Control Syst. Mag.
21
,
40
51
(
2001
).
26.
H.
Daido
and
K.
Nakanishi
,
Phys. Rev. E
75
,
056206
(
2007
).
27.
H.
Daido
,
Europhys. Lett.
87
,
40001
(
2009
).
28.
G.
Tanaka
,
K.
Morino
,
H.
Daido
, and
K.
Aihara
,
Phys. Rev. E
89
,
052906
(
2014
).
29.
B.
Thakur
,
D.
Sharma
, and
A.
Sen
,
Phys. Rev. E
90
,
042904
(
2014
).
30.
S.
Kundu
,
S.
Majhi
,
P.
Karmakar
,
D.
Ghosh
, and
B.
Rakshit
,
Euro Phys. Lett.
123
,
30001
(
2018
).
31.
R.
Mukherjee
and
A.
Sen
,
Chaos
28
,
053109
(
2018
).
32.
Y.
Murakami
and
H.
Fukuta
,
Fluid Dyn. Res.
21
,
1
12
(
2002
);
H.
Fukuta
,
Y.
Murakami
,
Phys. Rev. E
57
,
449
59
(
1998
).
33.
M.
Darvishyadegari
and
R.
Hassanzadeh
,
Acta Mech.
229
,
1783
1802
(
2018
).
34.
K.
Czolczynski
,
P.
Perlikowski
,
A.
Stefanski
, and
T.
Kapitaniak
,
Commun. Nonlinear Sci. Numer. Simulat.
17
,
3658
3672
(
2012
).
35.
J.
Strzalko
,
J.
Grabski
,
J.
Wojewoda
,
M.
Wiercigroch
, and
T.
Kapitaniak
,
Chaos
22
,
047503
(
2012
).
36.
S.
Takagi
and
T.
Ueda
,
Physica D
237
,
420
427
(
2008
).
37.
M.
Tabor
,
Chaos and Integrability in Nonlinear Dynamics: An Introduction
(
John Wiley & Sons
,
New York
,
1988
).
38.
A.
Prasad
,
Chaos Solitons Fractals
43
,
42
46
(
2010
).
39.
S. K.
Bhowmick
,
D.
Ghosh
, and
S. K.
Dana
,
Chaos
21
,
033118
(
2011
).
40.
A.
Sharma
and
M. D.
Shrimali
,
Nonlinear Dyn.
69
,
371
377
(
2012
).
41.
B. K.
Bera
,
S. K.
Bhowmick
, and
D.
Ghose
,
Int. J. Dyn. Control
5
,
269
273
(
2017
).
42.
N.
Punetha
,
V.
Varshney
,
S.
Sahoo
,
G.
Saxena
,
A.
Prasad
, and
R.
Ramaswamy
,
Phys. Rev. E
98
,
022212
(
2018
).
43.
W.
Zou
,
D. V.
Senthilkumar
,
R.
Nagao
,
I. Z.
Kiss
,
Y.
Tang
,
A.
Koseska
,
J.
Duan
, and
J.
Kurths
,
Nat. Commun.
6
,
7709
(
2015
).
44.
S.
Kundu
,
S.
Majhi
, and
D.
Ghosh
,
Phys. Rev. E
97
,
052313
(
2018
).
45.
A.
Franci
,
A.
Chaillet
,
E.
Panteley
, and
F. L.
Lagarrigue
,
Math. Control Signals Syst.
24
,
169
217
(
2012
).
46.
M.
Luo
,
Y.
Wu
, and
J.
Peng
,
Biol. Cybern.
101
,
241
246
(
2009
).
47.
M.
Frasca
,
A.
Bergner
,
J.
Kurths
, and
L.
Fortuna
,
Int. J. Bifurcat. Chaos
22
,
1250173
(
2012
).
48.
M. C.
Thompson
and
P. L.
Gal
,
Eur. J. Mech. B
23
,
219
(
2004
).
49.
J.
Garcia-Ojalvo
,
M. B.
Elowitz
, and
S. H.
Strogatz
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
10955
(
2004
).
50.
E.
Ullner
,
A.
Zaikin
,
E. I.
Volkov
, and
J.
Garcia-Ojalvo
,
Phys. Rev. Lett.
99
,
148103
(
2007
);
[PubMed]
E.
Ullner
,
A.
Koseska
,
J.
Kurths
,
E.
Volkov
,
H.
Kantz
, and
J.
Garcia-Ojalvo
,
Phys. Rev. E
78
,
031904
(
2008
).
51.
T.
Banerjee
,
P. S.
Dutta
, and
A.
Gupta
,
Phys. Rev. E
91
,
052919
(
2015
).
52.
N.
Zhao
,
Z.
Sun
, and
W.
Xu
,
Sci. Rep.
8
,
8721
(
2018
).
53.
K.
Premalatha
,
V. K.
Chandrasekar
,
M.
Senthilvelan
, and
M.
Lakshmanan
,
Phys. Rev. E
91
,
052915
(
2015
).
54.
V. K.
Chandrasekar
,
S.
Karthiga
, and
M.
Lakshmanan
,
Phys. Rev. E
92
,
012903
(
2015
).
55.
Y.
Liu
,
W.
Zou
,
M.
Zhan
,
J.
Duan
, and
J.
Kurths
,
Europhys. Lett.
114
,
40004
(
2016
).
56.
K.
Ponrasu
,
K.
Sathiyadevi
,
V. K.
Chandrasekar
, and
M.
Lakshmanan
,
Europhys. Lett.
124
,
20007
(
2018
).
57.
W.
Zou
,
M.
Zhan
, and
J.
Kurths
,
Chaos
27
,
114303
(
2017
).
58.
W.
Zou
,
J. L. O.
Espindola
,
D. V.
Senthilkumar
,
I. Z.
Kiss
,
M.
Zhan
, and
J.
Kurths
,
Phys. Rev. E
99
,
032214
(
2019
).
59.
X.
Lei
,
W.
Liu
,
W.
Zou
, and
J.
Kurths
,
Chaos
29
,
073110
(
2019
).
60.
A.
Gjurchinovski
,
E.
Schöll
, and
A.
Zakharova
,
Phys. Rev. E
95
,
042218
(
2017
).
You do not currently have access to this content.