Despite the widespread diffusion of nonlinear methods for heart rate variability (HRV) analysis, the presence and the extent to which nonlinear dynamics contribute to short-term HRV are still controversial. This work aims at testing the hypothesis that different types of nonlinearity can be observed in HRV depending on the method adopted and on the physiopathological state. Two entropy-based measures of time series complexity (normalized complexity index, NCI) and regularity (information storage, IS), and a measure quantifying deviations from linear correlations in a time series (Gaussian linear contrast, GLC), are applied to short HRV recordings obtained in young (Y) and old (O) healthy subjects and in myocardial infarction (MI) patients monitored in the resting supine position and in the upright position reached through head-up tilt. The method of surrogate data is employed to detect the presence and quantify the contribution of nonlinear dynamics to HRV. We find that the three measures differ both in their variations across groups and conditions and in the percentage and strength of nonlinear HRV dynamics. NCI and IS displayed opposite variations, suggesting more complex dynamics in O and MI compared to Y and less complex dynamics during tilt. The strength of nonlinear dynamics is reduced by tilt using all measures in Y, while only GLC detects a significant strengthening of such dynamics in MI. A large percentage of detected nonlinear dynamics is revealed only by the IS measure in the Y group at rest, with a decrease in O and MI and during T, while NCI and GLC detect lower percentages in all groups and conditions. While these results suggest that distinct dynamic structures may lie beneath short-term HRV in different physiological states and pathological conditions, the strong dependence on the measure adopted and on their implementation suggests that physiological interpretations should be provided with caution.

1.
U.
Rajendra Acharya
,
K.
Paul Joseph
,
N.
Kannathal
,
C. M.
Lim
, and
J. S.
Suri
, “
Heart rate variability: A review
,”
Med. Biol. Eng. Comput.
44
(
12
),
1031
1051
(
2006
).
2.
S.
Akselrod
,
D.
Gordon
,
F.
Andrew Ubel
,
D. C.
Shannon
,
A. C.
Berger
, and
R. J.
Cohen
, “
Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control
,”
Science
213
(
4504
),
220
222
(
1981
).
3.
Y.
Bai
,
K. L.
Siu
,
S.
Ashraf
,
L.
Faes
,
G.
Nollo
, and
K. H.
Chon
, “
Nonlinear coupling is absent in acute myocardial patients but not healthy subjects
,”
Am. J. Physiol. Heart Circ. Physiol.
295
(
2
),
H578
H586
(
2008
).
4.
G.
Baselli
,
S.
Cerutti
,
S.
Civardi
,
F.
Lombardi
,
A.
Malliani
,
M.
Merri
,
M.
Pagani
, and
G.
Rizzo
, “
Heart rate variability signal processing: A quantitative approach as an aid to diagnosis in cardiovascular pathologies
,”
Int. J. Biomed. Comput.
20
(
1–2
),
51
70
(
1987
).
5.
P.
Bernaola-Galván
,
P. Ch.
Ivanov
,
L. A.
Nunes Amaral
, and
H.
Eugene Stanley
, “
Scale invariance in the nonstationarity of human heart rate
,”
Phys. Rev. Lett.
87
(
16
),
168105
(
2001
).
6.
P. A.
Bernaola-Galván
,
M.
Gómez-Extremera
,
A.
Ramón Romance
, and
P.
Carpena
, “
Correlations in magnitude series to assess nonlinearities: Application to multifractal models and heartbeat fluctuations
,”
Phys. Rev. E
96
(
3
),
032218
(
2017
).
7.
G. G.
Berntson
,
J.
Thomas Bigger
, Jr.,
D. L.
Eckberg
,
P.
Grossman
,
P. G.
Kaufmann
,
M.
Malik
,
H. N.
Nagaraja
,
S. W.
Porges
,
J.
Philip Saul
,
P. H.
Stone
et al., “
Heart rate variability: Origins, methods, and interpretive caveats
,”
Psychophysiology
34
(
6
),
623
648
(
1997
).
8.
J.
Thomas Bigger
, Jr.,
J. L.
Fleiss
,
R. C.
Steinman
,
L. M.
Rolnitzky
,
R. E.
Kleiger
, and
J. N.
Rottman
, “
Frequency domain measures of heart period variability and mortality after myocardial infarction
,”
Circulation
85
(
1
),
164
171
(
1992
).
9.
M. C.
Cario
and
B. L.
Nelson
, “
Autoregressive to anything: Time-series input processes for simulation
,”
Oper. Res. Lett.
19
(
2
),
51
58
(
1996
).
10.
P.
Carpena
,
P. A.
Bernaola-Galván
,
M.
Gómez-Extremera
, and
A. V.
Coronado
, “Transforming Gaussian correlations. Applications to generating long-range power-law correlated time series with arbitrary distribution,” e-print arXiv:1909.01725 (2019).
11.
H.
Chen
, “
Initialization for norta: Generation of random vectors with specified marginals and correlations
,”
INFORMS J. Comput.
13
(
4
),
312
331
(
2001
).
12.
K.
Chua Chua
,
V.
Chandran
,
U. R.
Acharya
, and
C. M.
Lim
, “
Cardiac state diagnosis using higher order spectra of heart rate variability
,”
J. Med. Eng. Technol.
32
(
2
),
145
155
(
2008
).
13.
M. A.
Cohen
and
J.
Andrew Taylor
, “
Short-term cardiovascular oscillations in man: Measuring and modelling the physiologies
,”
J. Physiol. (Lond.)
542
(
3
),
669
683
(
2002
).
14.
M.
Costa
,
I. R.
Pimentel
,
T.
Santiago
,
P.
Sarreira
,
J.
Melo
, and
E.
Ducla-Soares
, “
No evidence of chaos in the heart rate variability of normal and cardiac transplant human subjects
,”
J. Cardiovasc. Electrophysiol.
10
(
10
),
1350
1357
(
1999
).
15.
L.
Faes
,
D.
Kugiumtzis
,
G.
Nollo
,
F.
Jurysta
, and
D.
Marinazzo
, “
Estimating the decomposition of predictive information in multivariate systems
,”
Phys. Rev. E
91
(
3
),
032904
(
2015
).
16.
L.
Faes
and
A.
Porta
, “Conditional entropy-based evaluation of information dynamics in physiological systems,” in Directed Information Measures in Neuroscience (Springer, 2014), pp. 61–86.
17.
J.-O.
Fortrat
,
Y.
Yamamoto
, and
R. L.
Hughson
, “
Respiratory influences on non-linear dynamics of heart rate variability in humans
,”
Biol. Cybern.
77
(
1
),
1
10
(
1997
).
18.
R.
Freeman
,
J.
Philip Saul
,
M. S.
Roberts
,
R. D.
Berger
,
C.
Broadbridge
, and
R. J.
Cohen
, “
Spectral analysis of heart rate in diabetic autonomic neuropathy: A comparison with standard tests of autonomic function
,”
Arch. Neurol.
48
(
2
),
185
190
(
1991
).
19.
L.
Glass
, “
Introduction to controversial topics in nonlinear science: Is the normal heart rate chaotic?
,”
Chaos
19
(
2
),
028501
(
2009
).
20.
M.
Gómez-Extremera
,
P. A.
Bernaola-Galván
,
S.
Vargas
,
J.
Benítez-Porres
,
P.
Carpena
, and
A.
Ramón Romance
, “
Differences in nonlinear heart dynamics during rest and exercise and for different training
,”
Physiol. Meas.
39
(
8
),
084008
(
2018
).
21.
R. B.
Govindan
,
K.
Narayanan
, and
M. S.
Gopinathan
, “
On the evidence of deterministic chaos in ECG: Surrogate and predictability analysis
,”
Chaos
8
(
2
),
495
502
(
1998
).
22.
A. R.
Gujjar
,
T. N.
Sathyaprabha
,
D.
Nagaraja
,
K.
Thennarasu
, and
N.
Pradhan
, “
Heart rate variability and outcome in acute severe stroke
,”
Neurocrit. Care
1
(
3
),
347
353
(
2004
).
23.
H. V.
Huikuri
,
T. H.
Mäkikallio
,
C.-K.
Peng
,
A. L.
Goldberger
,
U.
Hintze
, and
M.
Møller
, “
Fractal correlation properties of RR interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction
,”
Circulation
101
(
1
),
47
53
(
2000
).
24.
P. Ch.
Ivanov
,
L. A.
Nunes Amaral
,
A. L.
Goldberger
,
S.
Havlin
,
M. G.
Rosenblum
,
Z. R.
Struzik
, and
H.
Eugene Stanley
, “
Multifractality in human heartbeat dynamics
,”
Nature
399
(
6735
),
461
465
(
1999
).
25.
N.
Iyengar
,
C. K.
Peng
,
R.
Morin
,
A. L.
Goldberger
, and
L. A.
Lipsitz
, “
Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics
,”
Am. J. Physiol. Regul. Integr. Comp. Physiol.
271
(
4
),
R1078
R1084
(
1996
).
26.
J. K.
Kanters
,
M. V.
Hojgaard
,
E.
Agner
, and
N. H.
Holstein-Rathlou
, “
Influence of forced respiration on nonlinear dynamics in heart rate variability
,”
Am. J. Physiol. Regul. Integr. Comp. Physiol.
272
(
4
),
R1149
R1154
(
1997
).
27.
J. K.
Kanters
,
M. V.
Højgaard
,
E.
Agner
, and
N.-H.
Holstein-Rathlou
, “
Short-and long-term variations in non-linear dynamics of heart rate variability
,”
Cardiovasc. Res.
31
(
3
),
400
409
(
1996
).
28.
J. K.
Kanters
,
N.-H.
Holstein-Rathlou
, and
E.
Agner
, “
Lack of evidence for low-dimensional chaos in heart rate variability
,”
J. Cardiovasc. Electrophysiol.
5
(
7
),
591
601
(
1994
).
29.
D. T.
Kaplan
,
M. I.
Furman
,
S. M.
Pincus
,
S. M.
Ryan
,
L. A.
Lipsitz
, and
A. L.
Goldberger
, “
Aging and the complexity of cardiovascular dynamics
,”
Biophys. J.
59
(
4
),
945
949
(
1991
).
30.
R.
Karasik
,
N.
Sapir
,
Y.
Ashkenazy
,
P. Ch.
Ivanov
,
I.
Dvir
,
P.
Lavie
, and
S.
Havlin
, “
Correlation differences in heartbeat fluctuations during rest and exercise
,”
Phys. Rev. E
66
(
6
),
062902
(
2002
).
31.
H. P.
Koepchen
, “Physiology of rhythms and control systems: An integrative approach,” in Rhythms in Physiological Systems (Springer, 1991), pp. 3–20.
32.
L. F.
Kozachenko
and
N. N.
Leonenko
, “
Sample estimate of the entropy of a random vector
,”
Probl. Peredachi Inf.
23
(
2
),
9
16
(
1987
).
33.
A.
Kraskov
,
H.
Stögbauer
, and
P.
Grassberger
, “
Estimating mutual information
,”
Phys. Rev. E
69
(
6
),
066138
(
2004
).
34.
D.
Kugiumtzis
, “
Surrogate data test for nonlinearity including nonmonotonic transforms
,”
Phys. Rev. E
62
(
1
),
R25
(
2000
).
35.
D.
Kugiumtzis
, “
Statically transformed autoregressive process and surrogate data test for nonlinearity
,”
Phys. Rev. E
66
(
2
),
025201
(
2002
).
36.
D.
Kugiumtzis
and
E.
Bora-Senta
, “
Normal correlation coefficient of non-normal variables using piece-wise linear approximation
,”
Comput. Stat.
25
(
4
),
645
662
(
2010
).
37.
S.
Ted Li
and
J. L.
Hammond
, “
Generation of pseudorandom numbers with specified univariate distributions and correlation coefficients
,”
IEEE Trans. Syst. Man. Cybern.
SMC-5
(
5
),
557
561
(
1975
).
38.
J. T.
Lizier
,
M.
Prokopenko
, and
A. Y.
Zomaya
, “
Local measures of information storage in complex distributed computation
,”
Inf. Sci.
208
,
39
54
(
2012
).
39.
F.
Lombardi
,
G.
Sandrone
,
S.
Pernpruner
,
R.
Sala
,
M.
Garimoldi
,
S.
Cerutti
,
G.
Baselli
,
M.
Pagani
, and
A.
Malliani
, “
Heart rate variability as an index of sympathovagal interaction after acute myocardial infarction
,”
Am. J. Cardiol.
60
(
16
),
1239
1245
(
1987
).
40.
H.
Luukinen
,
K.
Koski
,
P.
Laippala
, and
K. E. J.
Airaksinen
, “
Orthostatic hypotension and the risk of myocardial infarction in the home-dwelling elderly
,”
J. Intern. Med.
255
(
4
),
486
493
(
2004
).
41.
M.
Malik
and
A.
John Camm
, “
Heart rate variability
,”
Clin. Cardiol.
13
(
8
),
570
576
(
1990
).
42.
N.
Montano
,
T.
Gnecchi Ruscone
,
A.
Porta
,
F.
Lombardi
,
M.
Pagani
, and
A.
Malliani
, “
Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt
,”
Circulation
90
(
4
),
1826
1831
(
1994
).
43.
R. B.
Nelsen
,
An Introduction to Copulas
(
Springer Science & Business Media
,
2007
).
44.
G.
Nollo
,
L.
Faes
,
B.
Pellegrini
,
A.
Porta
, and
R.
Antolini
, “Synchronization index for quantifying nonlinear causal coupling between RR interval and systolic arterial pressure after myocardial infarction,” in Computers in Cardiology 2000 (Cat. 00CH37163) (IEEE, 2000), Vol. 27, pp. 143–146.
45.
G.
Nollo
,
L.
Faes
,
A.
Porta
,
B.
Pellegrini
,
F.
Ravelli
,
M.
Del Greco
,
M.
Disertori
, and
R.
Antolini
, “
Evidence of unbalanced regulatory mechanism of heart rate and systolic pressure after acute myocardial infarction
,”
Am. J. Physiol. Heart Circ. Physiol.
283
(
3
),
H1200
H1207
(
2002
).
46.
C.-K.
Peng
,
S.
Havlin
,
H.
Eugene Stanley
, and
A. L.
Goldberger
, “
Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series
,”
Chaos
5
(
1
),
82
87
(
1995
).
47.
S. M.
Pincus
, “
Approximate entropy as a measure of system complexity
,”
Proc. Natl. Acad. Sci. U.S.A.
88
(
6
),
2297
2301
(
1991
).
48.
S. M.
Pincus
and
A. L.
Goldberger
, “
Physiological time-series analysis: What does regularity quantify?
,”
Am. J. Physiol. Heart Circ. Physiol.
266
(
4
),
H1643
H1656
(
1994
).
49.
A.
Porta
,
G.
Baselli
,
D.
Liberati
,
N.
Montano
,
C.
Cogliati
,
T.
Gnecchi-Ruscone
,
A.
Malliani
, and
S.
Cerutti
, “
Measuring regularity by means of a corrected conditional entropy in sympathetic outflow
,”
Biol. Cybern.
78
(
1
),
71
78
(
1998
).
50.
A.
Porta
,
L.
Faes
,
M.
Masé
,
G.
D’Addio
,
G. D.
Pinna
,
R.
Maestri
,
N.
Montano
,
R.
Furlan
,
S.
Guzzetti
,
G.
Nollo
et al., “
An integrated approach based on uniform quantization for the evaluation of complexity of short-term heart period variability: Application to 24h Holter recordings in healthy and heart failure humans
,”
Chaos
17
(
1
),
015117
(
2007
).
51.
A.
Porta
,
V.
Bari
,
B.
De Maria
,
B.
Cairo
,
E.
Vaini
,
M.
Malacarne
,
M.
Pagani
, and
D.
Lucini
, “
On the relevance of computing a local version of sample entropy in cardiovascular control analysis
,”
IEEE Trans. Biomed. Eng.
66
(
3
),
623
631
(
2019
).
52.
A.
Porta
,
V.
Bari
,
A.
Marchi
,
B.
De Maria
,
D.
Cysarz
,
P.
Van Leeuwen
,
A.
Takahashi
,
A. M.
Catai
, and
T.
Gnecchi-Ruscone
, “
Complexity analyses show two distinct types of nonlinear dynamics in short heart period variability recordings
,”
Front. Physiol.
6
,
71
(
2015
).
53.
A.
Porta
,
G.
Baselli
,
S.
Guzzetti
,
M.
Pagani
,
A.
Malliani
, and
S.
Cerutti
, “
Prediction of short cardiovascular variability signals based on conditional distribution
,”
IEEE Trans. Biomed. Eng.
47
(
12
),
1555
1564
(
2000
).
54.
A.
Porta
,
K. R.
Casali
,
A. G.
Casali
,
T.
Gnecchi-Ruscone
,
E.
Tobaldini
,
N.
Montano
,
S.
Lange
,
D.
Geue
,
D.
Cysarz
, and
P.
Van Leeuwen
, “
Temporal asymmetries of short-term heart period variability are linked to autonomic regulation
,”
Am. J. Physiol. Regul. Integr. Comp. Physiol.
295
(
2
),
R550
R557
(
2008
).
55.
A.
Porta
,
L.
Faes
,
A.
Marchi
,
V.
Bari
,
B.
De Maria
,
S.
Guzzetti
,
R.
Colombo
, and
F.
Raimondi
, “
Disentangling cardiovascular control mechanisms during head-down tilt via joint transfer entropy and self-entropy decompositions
,”
Front. Physiol.
6
,
301
(
2015
).
56.
A.
Porta
,
T.
Gnecchi-Ruscone
,
E.
Tobaldini
,
S.
Guzzetti
,
R.
Furlan
, and
N.
Montano
, “
Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt
,”
J. Appl. Physiol. Respir. Environ. Exerc. Physiol.
103
(
4
),
1143
1149
(
2007
).
57.
A.
Porta
,
S.
Guzzetti
,
R.
Furlan
,
T.
Gnecchi-Ruscone
,
N.
Montano
, and
A.
Malliani
, “
Complexity and nonlinearity in short-term heart period variability: Comparison of methods based on local nonlinear prediction
,”
IEEE Trans. Biomed. Eng.
54
(
1
),
94
106
(
2007
).
58.
J. S.
Richman
and
J.
Randall Moorman
, “
Physiological time-series analysis using approximate entropy and sample entropy
,”
Am. J. Physiol. Heart Circ. Physiol.
278
(
6
),
H2039
H2049
(
2000
).
59.
T.
Schreiber
and
A.
Schmitz
, “
Improved surrogate data for nonlinearity tests
,”
Phys. Rev. Lett.
77
(
4
),
635
(
1996
).
60.
P. K.
Stein
,
P. P.
Domitrovich
,
H. V.
Huikuri
,
R. E.
Kleiger
, and
C.
Investigators
, “
Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction
,”
J. Cardiovasc. Electrophysiol.
16
(
1
),
13
20
(
2005
).
61.
J.
Theiler
,
S.
Eubank
,
A.
Longtin
,
B.
Galdrikian
, and
J.
Doyne Farmer
, “
Testing for nonlinearity in time series: The method of surrogate data
,”
Physica D
58
(
1–4
),
77
94
(
1992
).
62.
Z.
Visnovcova
,
M.
Mestanik
,
M.
Javorka
,
D.
Mokra
,
M.
Gala
,
A.
Jurko
,
A.
Calkovska
, and
I.
Tonhajzerova
, “
Complexity and time asymmetry of heart rate variability are altered in acute mental stress
,”
Physiol. Meas.
35
(
7
),
1319
(
2014
).
63.
A.
Voss
,
R.
Schroeder
,
A.
Heitmann
,
A.
Peters
, and
S.
Perz
, “
Short-term heart rate variability—Influence of gender and age in healthy subjects
,”
PLoS One
10
(
3
),
e0118308
(
2015
).
64.
A.
Voss
,
S.
Schulz
,
R.
Schroeder
,
M.
Baumert
, and
P.
Caminal
, “
Methods derived from nonlinear dynamics for analysing heart rate variability
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
367
(
1887
),
277
296
(
2008
).
65.
M.
Wibral
,
J. T.
Lizier
,
S.
Vögler
,
V.
Priesemann
, and
R.
Galuske
, “
Local active information storage as a tool to understand distributed neural information processing
,”
Front. Neuroinformatics
8
,
1
(
2014
).
66.
W.
Xiong
,
L.
Faes
, and
P. Ch.
Ivanov
, “
Entropy measures, entropy estimators, and their performance in quantifying complex dynamics: Effects of artifacts, nonstationarity, and long-range correlations
,”
Phys. Rev. E
95
(
6
),
062114
(
2017
).
67.
J.
Zhang
, “
Effect of age and sex on heart rate variability in healthy subjects
,”
J. Manipulative Physiol. Ther.
30
(
5
),
374
379
(
2007
).

Supplementary Material

You do not currently have access to this content.