The chaos detection of the Duffing system with the fractional-order derivative subjected to external harmonic excitation is investigated by the Melnikov method. In order to apply the Melnikov method to detect the chaos of the Duffing system with the fractional-order derivative, it is transformed into the first-order approximate equivalent integer-order system via the harmonic balance method, which has the same steady-state amplitude-frequency response equation with the original system. Also, the amplitude-frequency response of the Duffing system with the fractional-order derivative and its first-order approximate equivalent integer-order system are compared by the numerical solutions, and they are in good agreement. Then, the analytical chaos criterion of the Duffing system with the fractional-order derivative is obtained by the Melnikov function. The bifurcation and chaos of the Duffing system with the fractional-order derivative and an integer-order derivative are analyzed in detail, and the chaos criterion obtained by the Melnikov function is verified by using bifurcation analysis and phase portraits. The analysis results show that the Melnikov method is effective to detect the chaos in the Duffing system with the fractional-order derivative by transforming it into an equivalent integer-order system.

1.
Y.
Bolotin
,
A.
Tur
, and
V.
Yanovsky
,
Chaos: Concepts, Control and Constructive Use
(
Springer International Publishing
,
2017
).
2.
M. S.
Tavazoei
and
M.
Haeri
, “
A necessary condition for double scroll attractor existence in fractional-order systems
,”
Phys. Lett. A
367
,
102
113
(
2007
).
3.
I.
Petras
,
Fractional-Order Nonlinear Systems
(
Higher Education Press
,
Beijing
,
2011
).
4.
C. P.
Li
and
F. H.
Zeng
,
Numerical Methods for Fractional Calculus
(
CRC Press
,
New York
,
2015
).
5.
H. G.
Sun
,
Y.
Zhang
,
D.
Baleanu
,
W.
Chen
, and
Y. Q.
Chen
, “
A new collection of real world applications of fractional calculus in science and engineering
,”
Commun. Nonlinear Sci. Numer. Simul.
64
,
213
231
(
2018
).
6.
X.
Gao
and
J.
Yu
, “
Chaos in the fractional order periodically forced complex Duffing’s oscillators
,”
Chaos Solitons Fractals
24
,
1097
1104
(
2005
).
7.
C. P.
Li
and
G. J.
Peng
, “
Chaos in Chen’s system with a fractional order
,”
Chaos Solitons Fractals
22
,
443
450
(
2004
).
8.
I.
Petras
, “
A note on the fractional-order Chua’s system
,”
Chaos Solitons Fractals
38
,
140
147
(
2008
).
9.
K.
Sun
,
X.
Wang
, and
J. C.
Sprott
, “
Bifurcations and chaos in fractional-order simplified Lorenz system
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
20
,
1209
1219
(
2010
).
10.
J. G.
Lu
and
G.
Chen
, “
A note on the fractional-order Chen system
,”
Chaos Solitons Fractals
27
,
685
688
(
2006
).
11.
X.
Liu
,
L.
Hong
, and
L.
Yang
, “
Fractional-order complex T system: Bifurcations, chaos control, and synchronization
,”
Nonlinear Dyn.
75
,
589
602
(
2014
).
12.
J.
Ma
,
Y.
Xu
,
J.
Kurths
,
H.
Wang
, and
W.
Xu
, “
Detecting early-warning signals in periodically forced systems with noise
,”
Chaos
28
,
113601
(
2018
).
13.
J.
Ma
,
Y.
Xu
,
Y.
Li
,
R.
Tian
, and
J.
Kurths
, “
Predicting noise-induced critical transitions in bistable systems
,”
Chaos
29
,
081102
(
2019
).
14.
J.
Ma
,
Y.
Xu
,
W.
Xu
,
Y.
Li
, and
J.
Kurths
, “
Slowing down critical transitions via Gaussian white noise and periodic force
,”
Sci. China Technol. Sci.
(published online
2019
).
15.
M. S.
Tavazoei
and
M.
Haeri
, “
Limitations of frequency domain approximation for detecting chaos in fractional order systems
,”
Nonlinear Anal. Theory Methods Appl.
69
,
1299
1320
(
2008
).
16.
L. G.
Yuan
,
Q. G.
Yang
, and
C. B.
Zeng
, “
Chaos detection and parameter identification in fractional-order chaotic systems with delay
,”
Nonlinear Dyn.
73
,
439
448
(
2013
).
17.
S. B.
He
,
K. H.
Sun
, and
Y. X.
Peng
, “
Detecting chaos in fractional-order nonlinear systems using the smaller alignment index
,”
Phys. Lett. A
383
,
2267
2271
(
2019
).
18.
W.
Xing
,
E.
Chen
,
Y.
Chang
, and
M.
Wang
, “
Threshold for chaos of a Duffing oscillator with fractional-order derivative
,”
Shock Vib.
2019
,
1230194
(
2019
).
19.
K.
Adolfsson
,
M.
Enelund
, and
P.
Olsson
, “
On the fractional order model of viscoelasticity
,”
Mech. Time Depend. Mater.
9
,
15
34
(
2005
).
20.
Q.
Liu
,
Y.
Xu
, and
J.
Kurths
, “
Active vibration suppression of a novel airfoil model with fractional order viscoelastic constitutive relationship
,”
J. Sound Vib.
432
,
50
64
(
2018
).
21.
Y. G.
Yang
,
W.
Xu
,
W. T.
Jia
, and
Q.
Han
, “
Stationary response of nonlinear system with Caputo-type fractional derivative damping under Gaussian white noise excitation
,”
Nonlinear Dyn.
79
,
139
146
(
2015
).
22.
Y.
Xu
,
Y. G.
Li
, and
D.
Liu
, “
A method to stochastic dynamical systems with strong nonlinearity and fractional damping
,”
Nonlinear Dyn.
83
,
2311
2321
(
2016
).
23.
C. S.
Ding
,
J. Y.
Cao
, and
Y. Q.
Chen
, “
Fractional-order model and experimental verification for broadband hysteresis in piezoelectric actuators
,”
Nonlinear Dyn.
(published online
2019
).
24.
X.
Yang
,
Y. J.
Liang
, and
W.
Chen
, “
A fractal roughness model for the transport of fractional non-Newtonian fluid in microtubes
,”
Chaos Solitons Fractals
126
,
236
241
(
2019
).
25.
L. C.
Chen
,
X.
Liang
,
W. Q.
Zhu
, and
Y. B.
Zhao
, “
Stochastic averaging technique for SDOF strongly nonlinear systems with delayed feedback fractional-order PD controller
,”
Sci. China Technol. Sci.
62
,
287
297
(
2019
).
26.
X. Y.
Liu
, “
Optimization design on fractional order PID controller based on adaptive particle swarm optimization algorithm
,”
Nonlinear Dyn.
84
,
379
386
(
2016
).
27.
S.
Wiggins
,
Global Bifurcations and Chaos: Analytical Methods
(
Springer-Verlag
,
New York
,
1988
).
28.
F. M. A.
Salam
, “
The Mel’nikov technique for highly dissipative systems
,”
SIAM J. Appl. Math.
47
,
232
243
(
1987
).
29.
J.
Awrejcewicz
and
D.
Sendkowski
, “
Stick-slip chaos detection in coupled oscillators with friction
,”
Int. J. Solids Struct.
42
,
5669
5682
(
2005
).
30.
Z. D.
Du
and
W. N.
Zhang
, “
Melnikov method for homoclinic bifurcation in nonlinear impact oscillators
,”
Comput. Math. Appl.
50
,
445
458
(
2005
).
31.
W.
Xu
,
J. Q.
Feng
, and
H. W.
Rong
, “
Melnikov’s method for a general nonlinear vibro-impact oscillator
,”
Nonlinear Anal.
71
,
418
426
(
2017
).
32.
W.
Zhang
,
J. H.
Zhang
, and
M. H.
Yao
, “
The extended Melnikov method for non-autonomous nonlinear dynamical systems and application to multi-pulse chaotic dynamics of a buckled thin plate
,”
Nonlinear Anal. Real World Appl.
11
,
1442
1457
(
2010
).
33.
S. B.
Li
,
W.
Zhang
, and
Y. X.
Hao
, “
Melnikov-type method for a class of discontinuous planar systems and applications
,”
Int. J. Bifurcation Chaos
24
,
1450022
(
2014
).
34.
S. B.
Li
,
C.
Shen
,
W.
Zhang
, and
Y. X.
Hao
, “
The Melnikov method of heteroclinic orbits for a class of planar hybrid piecewise-smooth systems and application
,”
Nonlinear Dyn.
85
,
1091
1104
(
2016
).
35.
J.
Castro
and
J.
Alvarez
, “
Melnikov-type chaos of planar systems with two discontinuities
,”
Int. J. Bifurcation Chaos
25
,
1550027
(
2015
).
36.
J. C.
Niu
,
H.
Gutierrez
, and
B.
Ren
, “
Resonance analysis of fractional-order Mathieu oscillator
,”
J. Comput. Nonlinear Dyn.
13
,
051003
(
2018
).
37.
Y. A.
Rossikhin
and
M. V.
Shitikova
, “
New approach for the analysis of damped vibrations of fractional oscillators
,”
Shock Vib.
16
,
365
387
(
2009
).
38.
Y. A.
Rossikhin
and
M. V.
Shitikova
, “
On fallacies in the decision between the Caputo and Riemann–Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator
,”
Mech. Res. Commun.
45
,
22
27
(
2012
).
You do not currently have access to this content.