When a small amount of liquid is quickly injected into another liquid with similar density, the fluid jet usually does not propagate very far. However, when the two solutions chemically react to form a flexible membrane at their interface, then structures that are long and branching can form. Here, we describe the tube networks produced when a small amount of AlCl3 solution is quickly injected into a NaOH solution. Single straight tubes do not occur, but straight tubular “stems” with 2–5 “branches” are observed. The branches emerge relatively symmetrically from the stem at a common branching junction. These structures can have a ratio of propagation distance to stem width as large as 50. The stem and branches grow by the stretching of the membrane sheathing the closed tube system. These tube networks occasionally exhibit the spontaneous creation of new branches at a junction and also the splitting of a branching junction. A model explains why the branches occur, why they are symmetric around the central stem, and why the initial growth speed is insensitive to the flow rate.

1.
D. W.
Thompson
,
On Growth and Form
(
Cambridge University Press
,
1917
).
2.
K.
Showalter
and
I. R.
Epstein
, “
From chemical systems to system chemistry: Patterns in space and time
,”
Chaos
25
,
09613
(
2015
).
3.
I. R.
Epstein
, “
Coupled chemical oscillators and emergent system properties
,”
Chem. Commun.
50
,
10758
(
2014
).
4.
A. F.
Taylor
,
M. R.
Tinsley
, and
K.
Showalter
, “
Insights into collective cell behavior from populations of coupled chemical oscillators
,”
Phys. Chem. Chem. Phys.
17
,
20047
(
2015
).
5.
J.
Maselko
and
K.
Showalter
, “
Chemical waves in inhomogeneous excitable media
,”
Physica D
49
,
21
32
(
1991
).
6.
L. M.
Barge
 et al, “
From chemical gardens to chemobrionics
,”
Chem. Rev.
115
,
8652
8703
(
2015
).
7.
J.
Maselko
,
M.
Kiehl
,
J.
Couture
,
A.
Dyonizy
,
V.
Kaminker
,
P.
Nowak
, and
J.
Pantaleone
, “
Emergence of complex behavior in chemical cells: The system AlCl3-NaOH
,”
Langmuir
30
(
20
),
5726
(
2014
).
8.
M.
Kiehl
,
V.
Kaminker
,
J.
Pantaleone
,
P.
Nowak
,
A.
Dyonizy
, and
J.
Maselko
, “
Spontaneous formation of complex structures made from elastic membranes in an aluminum-hydroxide-carbonate system
,”
Chaos
25
,
064310
(
2015
).
9.
R.
Clement
and
S.
Douady
, “
Ocean-ridge-like growth in silica tubes
,”
Europhys. Lett.
89
,
44004
(
2010
).
10.
O.
Steinbock
,
J.
Cartwright
, and
L.
Barge
, “
The fertile physics of chemical gardens
,”
Phys. Today
69
(
3
),
44
(
2016
).
11.
S.
Thouvenel-Romans
,
W.
van Saarloos
, and
O.
Steinbock
, “
Silica tubes in chemical gardens: Radius selection and its hydrodynamic origin
,”
Europhys. Lett.
67
,
42
48
(
2004
).
12.
J.
Pantaleone
,
A.
Toth
,
D.
Horvath
,
L.
RoseFigura
,
W.
Morgan
, and
J.
Maselko
, “
Pressure oscillations in a chemical garden
,”
Phys. Rev. E
79
,
056221
(
2009
).
13.
J.
Pantaleone
,
A.
Toth
,
D.
Horvath
,
J.
Rother McMahan
,
R.
Smith
,
D.
Butki
,
J.
Braden
,
E.
Matthews
,
H.
Geri
, and
J.
Maselko
, “
Oscillations of a chemical garden
,”
Phys. Rev. E
77
,
046207
(
2008
).
14.
V.
Kaminker
,
J.
Maselko
, and
J.
Pantaleone
, “
The dynamics of open precipitation tubes
,”
J. Chem. Phys.
140
,
244901
(
2014
).
15.
Y.
Ding
,
B.
Batista
,
O.
Steinbock
,
J. H. E.
Cartwright
, and
S. S. S.
Cardoso
, “
Wavy membranes and the growth rate of a planar chemical garden: Enhanced diffusion and bioenergetics
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
9182
9186
(
2016
).
16.
E.
Villermaux
and
N.
Vandenberghe
, “
Geometry and fragmentation of soft brittle impacted bodies
,”
Soft Matter
9
,
8162
8176
(
2013
).
17.
S.
Moulinet
and
M.
Adda-Bedia
, “
Popping balloons: A case study of dynamical fragmentation
,”
Phys. Rev. Lett.
115
,
184301
(
2015
).
18.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
University Press
,
New York
,
1967
).
19.
H. I. V.
Kazachkov
, “
The mathematical models for penetration of liquid jets into a pool
,”
WSEAS Trans. Fluid Mech.
6
,
71
91
(
2011
).
20.
R. M.
Jones
,
Buckling of Bars, Plates and Shells
(
Bull Ridge Publishing
,
Blacksburg
,
VA
,
2006
).
21.
J. F.
Harvey
,
Theory and Design of Modern Pressure Vessels
(
Van Nostrand Reinhold
,
New York
,
1974
).
22.
S.
Paruchuri
and
M. P.
Brenner
, “
Jet splitting
,”
Phys. Rev. Lett.
98
,
134502
(
2007
).
23.
G. M.
Whitesides
, “
The origins and the future of microfluidics
,”
Nature
442
,
368
373
(
2006
).
You do not currently have access to this content.