To understand the collective motion of many individuals, we often rely on agent-based models with rules that may be computationally complex and involved. For biologically inspired systems in particular, this raises questions about whether the imposed rules are necessarily an accurate reflection of what is being followed. The basic premise of updating one’s state according to some underlying motivation is well suited to the realm of reservoir computing; however, entire swarms of individuals are yet to be tasked with learning movement in this framework. This work focuses on the specific case of many selfish individuals simultaneously optimizing their domains in a manner conducive to reducing their personal risk of predation. Using an echo state network and data generated from the agent-based model, we show that, with an appropriate representation of input and output states, this selfish movement can be learned. This suggests that a more sophisticated neural network, such as a brain, could also learn this behavior and provides an avenue to further the search for realistic movement rules in systems of autonomous individuals.

1.
A.
Cavagna
,
I.
Giardina
,
A.
Orlandi
,
G.
Parisi
,
A.
Procaccini
,
M.
Viale
, and
V.
Zdravkovic
, “
The starflag handbook on collective animal behaviour: 1. Empirical methods
,”
Anim. Behav.
76
,
217
236
(
2008
).
2.
S. D.
Algar
,
T.
Stemler
, and
M.
Small
, “From flocs to flocks,” in A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems, edited by E. E. N. Macau (Springer International Publishing, Cham, 2019), pp. 157–175.
3.
I. D.
Couzin
,
J.
Krause
,
R.
James
,
G. D.
Ruxton
, and
N. R.
Franks
, “
Collective memory and spatial sorting in animal groups
,”
J. Theor. Biol.
218
,
1
11
(
2002
).
4.
P.
Romanczuk
,
I. D.
Couzin
, and
L.
Schimansky-Geier
, “
Collective motion due to individual escape and pursuit response
,”
Phys. Rev. Lett.
102
,
010602
(
2009
).
5.
M.
Moussaïd
,
D.
Helbing
, and
G.
Theraulaz
, “
How simple rules determine pedestrian behavior and crowd disasters
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
6884
6888
(
2011
).
6.
W. D.
Hamilton
, “
Geometry for the selfish herd
,”
J. Theor. Biol.
31
,
295
311
(
1971
).
7.
S. D.
Algar
,
T.
Stemler
, and
M.
Small
, “
The active selfish herd
,”
J. Theor. Biol.
471
,
82
90
(
2019
).
8.
I. N.
Silva
,
D. H.
Spatti
,
R. A.
Flauzino
,
L. H. B.
Liboni
, and
S. F.
dos Reis Alves
,
Artificial Neural Networks
, 1st ed. (
Springer International Publishing
,
2017
).
9.
L.
Bayındır
, “
A review of swarm robotics tasks
,”
Neurocomputing
172
,
292
321
(
2016
).
10.
From Animals to Animats 12, SAB 2012, Lecture Notes in Computer Science Vol. 7426, edited by T. Ziemke, C. Balkenius, and J. Hallam (Springer, Berlin, 2012).
11.
H.
Jaeger
, “The ‘echo state’ approach to analysing and training recurrent neural networks-with an erratum note,” German National Research Center for Information Technology GMD Technical Report No. 148, 2001.
12.
M.
Lukoševičius
and
H.
Jaeger
, “
Reservoir computing approaches to recurrent neural network training
,”
Comput. Sci. Rev.
3
,
127
(
2009
).
13.
M.
Lukoşeviçius
,
H.
Jaeger
, and
B.
Schrauwen
, “
Reservoir computing trends
,”
KI—Künstliche Intelligenz
26
,
365
371
(
2012
).
14.
W.
Maass
,
T.
Natschläger
, and
H.
Markram
, “
Real-time computing without stable states: A new framework for neural computation based on perturbations
,”
Neural Comput.
14
,
2531
2560
(
2002
).
15.
G.
Tanaka
,
T.
Yamane
,
J. B.
Héroux
,
R.
Nakane
,
N.
Kanazawa
,
S.
Takeda
,
H.
Numata
,
D.
Nakano
, and
A.
Hirose
, “
Recent advances in physical reservoir computing: A review
,”
Neural Netw.
115
,
100
123
(
2019
).
16.
L.
Appeltant
,
M.
Soriano
,
G.
Van der Sande
,
J.
Danckaert
,
S.
Massar
,
J.
Dambre
,
B.
Schrauwen
,
C.
Mirasso
, and
I.
Fischer
, “
Information processing using a single dynamical node as complex system
,”
Nat. Commun.
2
,
468
(
2011
).
17.
D.
Brunner
,
M. C.
Soriano
,
C. R.
Mirasso
, and
I.
Fischer
, “
Parallel photonic information processing at gigabyte per second data rates using transient states
,”
Nat. Commun.
4
,
1364
(
2013
).
18.
L.
Larger
,
A.
Baylón-Fuentes
,
R.
Martinenghi
,
V. S.
Udaltsov
,
Y. K.
Chembo
, and
M.
Jacquot
, “
High-speed photonic reservoir computing using a time-delay-based architecture: Million words per second classification
,”
Phys. Rev. X
7
,
011015
(
2017
).
19.
K.
Vandoorne
,
P.
Mechet
,
T.
Van Vaerenbergh
,
M.
Fiers
,
G.
Morthier
,
D.
Verstraeten
,
B.
Schrauwen
,
J.
Dambre
, and
P.
Bienstman
, “
Experimental demonstration of reservoir computing on a silicon photonics chip
,”
Nat. Commun.
5
,
3541
(
2014
).
20.
K.
Nakajima
,
H.
Hauser
,
R.
Kang
,
E.
Guglielmino
,
D. G.
Caldwell
, and
R.
Pfeifer
, “
A soft body as a reservoir: Case studies in a dynamic model of octopus-inspired soft robotic arm
,”
Front. Comput. Neurosci.
7
,
91
(
2013
).
21.
C.
Fernando
and
S.
Sojakka
, “Pattern recognition in a bucket,” in Advances in Artificial Life, edited by W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich, and J. T. Kim (Springer, Berlin, 2003), pp. 588–597.
22.
C. S.
Calude
, “Unconventional computing: A brief subjective history,” CDMTCS Report No. 480 (University Auckland, 2015).
23.
Unconventional Computing, Encyclopedia of Complexity and Systems Science, edited by A. Adamatzky (Springer, New York, 2018).
24.
V. C.
Müller
and
M.
Hoffmann
, “
What is morphological computation? on how the body contributes to cognition and control
,”
Artif. Life
23
,
1
24
(
2017
).
25.
T.
Vicsek
and
A.
Zafeiris
, “
Collective motion
,”
Phys. Rep.
517
,
71
140
(
2012
).
26.
J. D.
Farmer
and
D.
Foley
, “
The economy needs agent-based modelling
,”
Nature
460
,
685
686
(
2009
).
27.
D. L.
DeAngelis
and
S. G.
Diaz
, “
Decision-making in agent-based modeling: A current review and future prospectus
,”
Front. Ecol. Evol.
6
,
237
(
2019
).
28.
A.
Crooks
,
C.
Castle
, and
M.
Batty
, “
Key challenges in agent-based modelling for geo-spatial simulation
,”
Comput. Environ. Urban Syst.
32
,
417
430
(
2008
).
29.
C.
Hartman
and
B.
Benes
, “
Autonomous boids
,”
Comput. Animat. Virtual Worlds
17
,
199
206
(
2006
).
30.
G.
Vásárhelyi
,
C.
Virágh
,
G.
Somorjai
,
T.
Nepusz
,
A. E.
Eiben
, and
T.
Vicsek
, “
Optimized flocking of autonomous drones in confined environments
,”
Sci. Robot.
3
,
eaat3536
(
2018
).
31.
M.
Ballerini
,
N.
Cabibbo
,
R.
Candelier
,
A.
Cavagna
,
E.
Cisbani
,
I.
Giardina
,
V.
Lecomte
,
A.
Orlandi
,
G.
Parisi
,
A.
Procaccini
,
M.
Viale
, and
V.
Zdravkovic
, “
Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
1232
1237
(
2008
).
32.
G.
Baglietto
and
E. V.
Albano
, “
Nature of the order-disorder transition in the Vicsek model for the collective motion of self-propelled particles
,”
Phys. Rev. E
80
,
050103
(
2009
).
33.
T.
Mora
and
W.
Bialek
, “
Are biological systems poised at criticality?
,”
J. Stat. Phys.
144
,
268
302
(
2011
).
34.
T.
Vicsek
, “Universal patterns of collective motion from minimal models of flocking,” in 2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems (IEEE, 2008), pp. 3–11.
35.
C. W.
Reynolds
, “
Flocks, herds and schools: A distributed behavioral model
,”
SIGGRAPH Comput. Graph.
21
,
25
34
(
1987
).
36.
C.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences
,
Springer Series in Synergetics
(
Springer-Verlag
,
1985
).
37.
Z.
Lu
,
J.
Pathak
,
B.
Hund
,
M.
Girvan
,
R.
Brockett
, and
E.
Ott
, “
Reservoir observers: Model-free inference of unmeasured variables in chaotic systems
,”
Chaos
27
,
041102
(
2017
).
38.
J.
Pathak
,
Z.
Lu
,
B. R.
Hunt
,
M.
Girvan
, and
E.
Ott
, “
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
,”
Chaos
27
,
121102
(
2017
).
39.
Z.
Lu
,
B. R.
Hunt
, and
E.
Ott
, “
Attractor reconstruction by machine learning
,”
Chaos
28
,
061104
(
2018
).
40.
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
Z.
Lu
, and
E.
Ott
, “
Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,”
Phys. Rev. Lett.
120
,
024102
(
2018
).
41.
T. L.
Carroll
, “
Testing dynamical system variables for reconstruction
,”
Chaos
28
,
103117
(
2018
).
42.
T.
Weng
,
H.
Yang
,
C.
Gu
,
J.
Zhang
, and
M.
Small
, “
Synchronization of chaotic systems and their machine-learning models
,”
Phys. Rev. E
99
,
042203
(
2019
).
43.
T.
Pyragiene
and
K.
Pyragas
, “
Design of a negative group delay filter via reservoir computing approach: Real-time prediction of chaotic signals
,”
Phys. Lett. A
383
,
3088
(
2019
).
44.
S.
Hochreiter
and
J.
Schmidhuber
, “
Long short-term memory
,”
Neural Comput.
9
,
1735
1780
(
1997
).
45.
H.
Jaeger
and
H.
Haas
, “
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
,”
Science
304
,
78
80
(
2004
).
46.
M.
Lukosevicius
, “A practical guide to applying echo state networks,” in Neural Networks: Tricks of the Trade, 2nd ed., edited by G. Montavon, G. B. Orr, and K.-R. Müller (Springer, Berlin, 2012), pp. 659–686.
47.
T.
Lymburn
,
A.
Khor
,
T.
Stemler
,
D. C.
Corréa
,
M.
Small
, and
T.
Jüngling
, “
Consistency in echo-state networks
,”
Chaos
29
,
023118
(
2019
).
48.
R. S.
Zimmermann
and
U.
Parlitz
, “
Observing spatio-temporal dynamics of excitable media using reservoir computing
,”
Chaos
28
,
043118
(
2018
).
49.
R. S.
Olson
,
D. B.
Knoester
, and
C.
Adami
, “Critical interplay between density-dependent predation and evolution of the selfish herd,” in Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO’13 (ACM, New York, NY, 2013), pp. 247–254.
50.
H. J.
Charlesworth
and
M. S.
Turner
, “
Intrinsically motivated collective motion
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
15362
15367
(
2019
).
51.
R.
Bastien
and
P.
Romanczuk
, “
A model of collective behavior based purely on vision
,”
preprint
bioRxiv
(
2019
).
52.
S. V.
Viscido
,
M.
Miller
, and
D. S.
Wethey
, “
The dilemma of the selfish herd: The search for a realistic movement rule
,”
J. Theor. Biol.
217
,
183
194
(
2002
).
53.
S.
Ortín
,
M. C.
Soriano
,
L.
Pesquera
,
D.
Brunner
,
D.
San-Martín
,
I.
Fischer
,
C. R.
Mirasso
, and
J. M.
Gutiérrez
, “
A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron
,”
Sci. Rep.
5
,
14945
(
2015
).
54.
N. J.
Ose
and
P. R.
Ohmann
, “
The selfish herd: Noise effects in local crowded horizon and Voronoi models
,”
J. Theor. Biol.
424
,
84
90
(
2017
).
55.
T.
Vicsek
,
A.
Czirók
,
E.
Ben-Jacob
,
I.
Cohen
, and
O.
Shochet
, “
Novel type of phase transition in a system of self-driven particles
,”
Phys. Rev. Lett.
75
,
1226
1229
(
1995
).

Supplementary Material

You do not currently have access to this content.