The Kuramoto model with high-order coupling has recently attracted some attention in the field of coupled oscillators in order, for instance, to describe clustering phenomena in sets of coupled agents. Instead of considering interactions given directly by the sine of oscillators’ angle differences, the interaction is given by the sum of sines of integer multiples of these angle differences. This can be interpreted as a Fourier decomposition of a general 2π-periodic interaction function. We show that in the case where only one multiple of the angle differences is considered, which we refer to as the “Kuramoto model with simple qth-order coupling,” the system is dynamically equivalent to the original Kuramoto model. In other words, any property of the Kuramoto model with simple higher-order coupling can be recovered from the standard Kuramoto model.

1.
Y.
Kuramoto
, in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics Vol. 39, edited by H. Araki (Springer, Berlin, 1975).
2.
Y.
Kuramoto
,
Prog. Theor. Phys. Suppl.
79
,
223
(
1984
).
4.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
5.
F.
Dörfler
and
F.
Bullo
,
Automatica
50
,
1539
(
2014
).
6.
Z.
Lu
,
K.
Klein-Cardeña
,
S.
Lee
,
T. M.
Antonsen
,
M.
Girvan
, and
E.
Ott
,
Chaos
26
,
094811
(
2016
).
7.
A. R.
Bergen
and
V.
Vittal
,
Power Systems Analysis
(
Prentice Hall
,
2000
).
8.
F.
Dörfler
,
M.
Chertkov
, and
F.
Bullo
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
2005
(
2013
).
9.
J. G.
Restrepo
,
E.
Ott
, and
B. R.
Hunt
,
Chaos
16
,
015107
(
2006
).
10.
R.
Delabays
,
P.
Jacquod
, and
F.
Dörfler
,
SIAM J. Appl. Dyn. Syst.
18
,
458
(
2019
).
11.
D.
Hansel
,
G.
Mato
, and
C.
Meunier
,
Phys. Rev. E
48
,
3470
(
1993
).
13.
P. S.
Skardal
,
E.
Ott
, and
J. G.
Restrepo
,
Phys. Rev. E
84
,
036208
(
2011
).
14.
M.
Komarov
and
A.
Pikovsky
,
Phys. Rev. Lett.
111
,
204101
(
2013
).
15.
K.
Li
,
S.
Ma
,
H.
Li
, and
J.
Yang
,
Phys. Rev. E
89
,
032917
(
2014
).
16.
H.
Wang
,
W.
Han
, and
J.
Yang
,
Phys. Rev. E
96
,
022202
(
2017
).
17.
S.
Eydam
and
M.
Wolfrum
,
Phys. Rev. E
96
,
052205
(
2017
).
18.
X.
Li
,
J.
Zhang
,
Y.
Zou
, and
S.
Guana
,
Chaos
29
,
043102
(
2019
).
19.
X.
Li
,
T.
Qiu
,
S.
Boccaletti
,
I.
Sendiña Nadal
,
Z.
Liu
, and
S.
Guan
,
New J. Phys.
21
,
053002
(
2019
).
20.
D.
Aeyels
and
J. A.
Rogge
,
Prog. Theor. Phys.
112
,
921
(
2004
).
21.
R. E.
Mirollo
and
S. H.
Strogatz
,
Physica D
205
,
249
(
2005
).
22.
M.
Verwoerd
and
O.
Mason
,
SIAM J. Appl. Dyn. Syst.
7
,
134
(
2008
).
23.
F.
Dörfler
and
F.
Bullo
, in
Proceedings of the 2011 American Control Conference (ACC)
(IEEE, 2011), pp. 3239–3244.
24.
25.
M.
Tyloo
,
R.
Delabays
, and
P.
Jacquod
,
Phys. Rev. E
99
,
062213
(
2019
).
26.
J.
Hindes
and
I. B.
Schwartz
,
Chaos
28
,
071106
(
2018
).
27.
I. Z.
Kiss
,
Y.
Zhai
, and
J. L.
Hudson
,
Phys. Rev. Lett.
94
,
248301
(
2005
).
28.
R. K.
Niyogi
and
L. Q.
English
,
Phys. Rev. E
80
,
066213
(
2009
).
29.
P.
Ashwin
and
J.
Borresen
,
Phys. Rev. E
70
,
026203
(
2004
).
30.
J.
Lorenz
,
Int. J. Mod. Phys. C
18
,
1819
(
2007
).
You do not currently have access to this content.