Recurrence plots and recurrence quantification analysis are powerful tools to study the behavior of dynamical systems. What we learn through these tools is typically determined by the choice of a distance threshold in the phase space, which introduces arbitrariness in the definition of recurrence. Not only does symbolic recurrence overcome this difficulty, but also it offers a richer representation that book-keeps the recurrent portions of the phase space. Using symbolic recurrences, we can construct recurrence plots, perform quantification analysis, and examine causal links between dynamical systems from their time-series. Although previous efforts have demonstrated the feasibility of such a symbolic framework on synthetic data, the study of real time-series remains elusive. Here, we seek to bridge this gap by systematically examining a wide range of experimental datasets, from firearm prevalence and media coverage in the United States to the effect of sex on the interaction of swimming fish. This work offers a compelling demonstration of the potential of symbolic recurrence in the study of real-world applications across different research fields while providing a computer code for researchers to perform their own time-series explorations.

1.
H.
Poincaré
, “
Sur le problème des trois corps et les équations de la dynamique
,”
Acta Math.
13
,
A3
A270
(
1890
).
2.
J.-P.
Eckmann
,
S. O.
Kamphorst
, and
D.
Ruelle
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
,
973
(
1987
).
3.
N.
Marwan
, “
A historical review of recurrence plots
,”
Eur. Phys. J. Spec. Top.
164
,
3
12
(
2008
).
4.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
5.
N.
Marwan
,
M. H.
Trauth
,
M.
Vuille
, and
J.
Kurths
, “
Comparing modern and Pleistocene ENSO-like influences in NW Argentina using nonlinear time series analysis methods
,”
Clim. Dyn.
21
,
317
326
(
2003
).
6.
U.
Brandt
,
N.
Nowaczyk
,
A.
Ramrath
,
A.
Brauer
,
J.
Mingram
,
S.
Wulf
, and
J.
Negendank
, “
Palaeomagnetism of Holocene and late Pleistocene sediments from Lago di Mezzano and Lago Grande di Monticchio (Italy): Initial results
,”
Quat. Sci. Rev.
18
,
961
976
(
1999
).
7.
J.
Nichols
,
S.
Trickey
, and
M.
Seaver
, “
Damage detection using multivariate recurrence quantification analysis
,”
Mech. Syst. Signal Process.
20
,
421
437
(
2006
).
8.
J.
Belaire-Franch
,
D.
Contreras
, and
L.
Tordera-Lledó
, “
Assessing nonlinear structures in real exchange rates using recurrence plot strategies
,”
Physica D
171
,
249
264
(
2002
).
9.
N.
Marwan
and
A.
Meinke
, “
Extended recurrence plot analysis and its application to ERP data
,”
Int. J. Bifurcat. Chaos
14
,
761
771
(
2004
).
10.
M. V.
Caballero-Pintado
,
M.
Matilla-García
, and
M.
Ruiz Marín
, “
Symbolic recurrence plots to analyze dynamical systems
,”
Chaos
28
,
063112
(
2018
).
11.
M.
Porfiri
and
M.
Ruiz Marín
, “
Transfer entropy on symbolic recurrences
,”
Chaos
29
,
063123
(
2019
).
12.
N.
Marwan
and
J.
Kurths
, “
Nonlinear analysis of bivariate data with cross recurrence plots
,”
Phys. Lett. A
302
,
299
307
(
2002
).
13.
Y.
Zou
,
M. C.
Romano
,
M.
Thiel
,
N.
Marwan
, and
J.
Kurths
, “
Inferring indirect coupling by means of recurrences
,”
Int. J. Bifurcat. Chaos
21
,
1099
1111
(
2011
).
14.
M. C.
Romano
,
M.
Thiel
,
J.
Kurths
, and
C.
Grebogi
, “
Estimation of the direction of the coupling by conditional probabilities of recurrence
,”
Phys. Rev. E
76
,
036211
(
2007
).
15.
C. L.
Webber
and
J. P.
Zbilut
, “
Dynamical assessment of physiological systems and states using recurrence plot strategies
,”
J. Appl. Physiol. Respir. Environ. Exerc. Physiol.
76
,
965
973
(
1994
).
16.
T.
March
,
S.
Chapman
, and
R.
Dendy
, “
Recurrence plot statistics and the effect of embedding
,”
Physica D
200
,
171
184
(
2005
).
17.
A. M.
Ramos
,
A.
Builes-Jaramillo
,
G.
Poveda
,
B.
Goswami
,
E. E.
Macau
,
J.
Kurths
, and
N.
Marwan
, “
Recurrence measure of conditional dependence and applications
,”
Phys. Rev. E
95
,
052206
(
2017
).
18.
J. M.
Amigó
,
R.
Monetti
,
T.
Aschenbrenner
, and
W.
Bunk
, “
Transcripts: An algebraic approach to coupled time series
,”
Chaos
22
,
013105
(
2012
).
19.
J. M.
Amigó
,
T.
Aschenbrenner
,
W.
Bunk
, and
R.
Monetti
, “
Dimensional reduction of conditional algebraic multi-information via transcripts
,”
Inf. Sci.
278
,
298
310
(
2014
).
20.
T.
Schreiber
, “
Measuring information transfer
,”
Phys. Rev. Lett.
85
,
461
(
2000
).
21.
M.
Porfiri
,
R. R.
Sattanapalle
,
S.
Nakayama
,
J.
Macinko
, and
R.
Sipahi
, “
Media coverage and firearm acquisition in the aftermath of a mass shooting
,”
Nat. Human Behav.
3
,
913
921
(
2019
).
22.
P.
Zhang
,
M.
Rosen
,
S. D.
Peterson
, and
M.
Porfiri
, “
An information-theoretic approach to study fluid–structure interactions
,”
J. Fluid Mech.
848
,
968
986
(
2018
).
23.
D.
Neri
,
T.
Ruberto
,
G.
Cord-Cruz
, and
M.
Porfiri
, “
Information theory and robotics meet to study predator-prey interactions
,”
Chaos
27
,
73111
(
2017
).
24.
R.
Barak Ventura
,
S.
Richmond
,
M.
Nadini
,
S.
Nakayama
, and
M.
Porfiri
, “
Does winning or losing change players’ engagement in competitive games? Experiments in virtual reality
,”
IEEE Trans. Games
(in press).
25.
D.
Neri
,
T.
Ruberto
,
V.
Mwaffo
,
T.
Bartolini
, and
M.
Porfiri
, “
Social environment modulates anxiogenic effects of caffeine in zebrafish
,”
Behav. Pharmacol.
30
,
45
58
(
2019
).
26.
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick 1980 (Springer, 1981), pp. 366–381.
27.
H.
Yang
and
Y.
Chen
, “
Heterogeneous recurrence monitoring and control of nonlinear stochastic processes
,”
Chaos
24
,
013138
(
2014
).
28.
A.
Groth
, “
Visualization of coupling in time series by order recurrence plots
,”
Phys. Rev. E
72
,
046220
(
2005
).
29.
S.
Schinkel
,
N.
Marwan
, and
J.
Kurths
, “
Order patterns recurrence plots in the analysis of ERP data
,”
Cogn. Neurodyn.
1
,
317
325
(
2007
).
30.
R.
Donner
,
U.
Hinrichs
, and
B.
Scholz-Reiter
, “
Symbolic recurrence plots: A new quantitative framework for performance analysis of manufacturing networks
,”
Eur. Phys. J. Spec. Top.
164
,
85
104
(
2008
).
31.
M. V.
Caballero-Pintado
,
M.
Matilla-García
, and
M. R.
Marín
, “
Symbolic correlation integral
,”
Econom. Rev.
38
,
533
556
(
2019
).
32.
T. M.
Cover
and
J. A.
Thomas
,
Elements of Information Theory
(
John Wiley & Sons
,
2012
).
33.
T.
Schreiber
and
A.
Schmitz
, “
Improved surrogate data for nonlinearity tests
,”
Phys. Rev. Lett.
77
,
635
(
1996
).
34.
A. P.
Holmes
,
R. C.
Blair
,
J. D. G.
Watson
, and
I.
Ford
, “
Nonparametric analysis of statistic images from functional mapping experiments
,”
J. Cerebral Blood Flow Metab.
16
,
7
22
(
1996
).
35.
T. E.
Nichols
and
A. P.
Holmes
, “
Nonparametric permutation tests for functional neuroimaging: A primer with examples
,”
Hum. Brain Mapp.
15
,
1
25
(
2002
).
36.
P.
Zhang
,
E.
Krasner
,
S. D.
Peterson
, and
M.
Porfiri
, “
An information-theoretic study of fish swimming in the wake of a pitching airfoil
,”
Physica D
396
,
35
46
(
2019
).
37.
E.
Depetris-Chauvin
, “
Fear of Obama: An empirical study of the demand for guns and the U.S. 2008 presidential election
,”
J. Public Econ.
130
,
66
79
(
2015
).
38.
P.
William Navidi
,
Statistics for Engineers and Scientists
(
McGraw-Hill Education
,
2014
).
39.
U.
Muller
,
E.
Stamhuis
, and
J.
Videler
, “
Hydrodynamics of unsteady fish swimming and the effects of body size: Comparing the flow fields of fish larvae and adults
,”
J. Exp. Biol.
203
,
193
206
(
2000
).
40.
M.
Porfiri
, “
Inferring causal relationships in zebrafish-robot interactions through transfer entropy: A small lure to catch a big fish
,”
Anim. Behav. Cogn.
5
,
341
367
(
2018
).
41.
D.
Romano
,
E.
Donati
,
G.
Benelli
, and
C.
Stefanini
, “
A review on animal–robot interaction: From bio-hybrid organisms to mixed societies
,”
Biol. Cybern.
113
,
201
225
(
2019
).
42.
R. P.
McMahan
,
D. A.
Bowman
,
D. J.
Zielinski
, and
R. B.
Brady
, “
Evaluating display fidelity and interaction fidelity in a virtual reality game
,”
IEEE Trans. Vis. Comput. Graph
18
,
626
633
(
2012
).
43.
M.
Csikszentmihalyi
,
S.
Abuhamdeh
, and
J.
Nakamura
, “Flow,” in Flow and the Foundations of Positive Psychology: The Collected Works of Mihaly Csikszentmihalyi (Springer, 2014), pp. 227–238.
44.
J.
Krause
,
D.
Hoare
,
S.
Krause
,
C. K.
Hemelrijk
, and
D. I.
Rubenstein
, “
Leadership in fish shoals
,”
Fish Fish.
1
,
82
89
(
2000
).
45.
N.
Ruhl
and
S. P.
McRobert
, “
The effect of sex and shoal size on shoaling behaviour in Danio rerio
,”
J. Fish Biol.
67
,
1318
1326
(
2005
).
46.
Additional analyses have been carried out in order to ensure that the claims of the study are robust to noise. Specifically, we performed the same procedure on a modified time-series with additive Gaussian noise (with zero mean and standard deviation equal to 10% of the average speed among all the fish), obtaining equivalent results.
47.
A.
Etinger
,
J.
Lebron
, and
B. G.
Palestis
, “
Sex-assortative shoaling in zebrafish (Danio rerio)
,”
BIOS
80
,
153
158
(
2009
).
48.
R.
Spence
and
C.
Smith
, “
Male territoriality mediates density and sex ratio effects on oviposition in the zebrafish, Danio rerio
,”
Anim. Behav.
69
,
1317
1323
(
2005
).
49.
S.
Uusi-Heikkilä
,
D.
Bierbach
,
J.
Alós
,
P.
Tscheligi
,
C.
Wolter
, and
R.
Arlinghaus
, “
Relatively large males lower reproductive success in female zebrafish
,”
Environ. Biol. Fishes
101
,
1625
1638
(
2018
).
50.
T.
Roy
and
A.
Bhat
, “
Population, sex and body size: Determinants of behavioural variations and behavioural correlations among wild zebrafish Danio rerio
,
R. Soc. Open Sci.
5
,
170978
(
2018
).
51.
A. J.
King
,
D. D.
Johnson
, and
M. V.
Vugt
, “
The origins and evolution of leadership
,”
Curr. Biol.
19
,
R911
R916
(
2009
).
52.
A.
Strandburg-Peshkin
,
D.
Papageorgiou
,
M. C.
Crofoot
, and
D. R.
Farine
, “
Inferring influence and leadership in moving animal groups
,”
Philos. Trans. R. Soc. B
373
,
20170006
(
2018
).
53.
T.
Bossomaier
,
L.
Barnett
,
M.
Harré
, and
J. T.
Lizier
,
An Introduction to Transfer Entropy: Information Flow in Complex Systems
(
Springer
,
Berlin
,
2016
).
54.
M.
Porfiri
and
M.
Ruiz Marín
, “
Inference of time-varying networks through transfer entropy, the case of a Boolean network model
,”
Chaos
28
,
103123
(
2018
).
55.
S.
Butail
and
M.
Porfiri
, “
Detecting switching leadership in collective motion
,”
Chaos
29
,
011102
(
2019
).
56.
D. N.
Politis
and
H.
White
, “
Automatic block-length selection for the dependent bootstrap
,”
Econom. Rev.
23
,
53
70
(
2004
).

Supplementary Material

You do not currently have access to this content.