The long-term average response of observables of chaotic systems to dynamical perturbations can often be predicted using linear response theory, but not all chaotic systems possess a linear response. Macroscopic observables of complex dissipative chaotic systems, however, are widely assumed to have a linear response even if the microscopic variables do not, but the mechanism for this is not well-understood. We present a comprehensive picture for the linear response of macroscopic observables in high-dimensional coupled deterministic dynamical systems, where the coupling is via a mean field and the microscopic subsystems may or may not obey linear response theory. We derive stochastic reductions of the dynamics of these observables from statistics of the microscopic system and provide conditions for linear response theory to hold in finite dimensional systems and in the thermodynamic limit. In particular, we show that for large systems of finite size, the linear response is induced via self-generated noise. We present examples in the thermodynamic limit where the macroscopic observable satisfies linear response theory (LRT), although the microscopic subsystems individually violate LRT, as well as a converse example where the macroscopic observable does not satisfy LRT despite all microscopic subsystems satisfying LRT when uncoupled. This latter, maybe surprising, example is associated with emergent nontrivial dynamics of the macroscopic observable. We provide numerical evidence for our results on linear response as well as some analytical intuition.

1.
A. J.
Majda
,
R.
Abramov
, and
B.
Gershgorin
, “
High skill in low-frequency climate response through fluctuation dissipation theorems despite structural instability
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
581
586
(
2010
).
2.
V.
Lucarini
and
S.
Sarno
, “
A statistical mechanical approach for the computation of the climatic response to general forcings
,”
Nonlinear Processes Geophys.
18
,
7
28
(
2011
).
3.
R. V.
Abramov
and
A. J.
Majda
, “
Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems
,”
Nonlinearity
20
,
2793
(
2007
).
4.
R. V.
Abramov
and
A. J.
Majda
, “
New approximations and tests of linear fluctuation-response for chaotic nonlinear forced-dissipative dynamical systems
,”
J. Nonlinear Sci.
18
,
303
341
(
2008
).
5.
F. C.
Cooper
and
P. H.
Haynes
, “
Climate sensitivity via a nonparametric fluctuation-dissipation theorem
,”
J. Atmos. Sci.
68
,
937
953
(
2011
).
6.
F. C.
Cooper
,
J. G.
Esler
, and
P. H.
Haynes
, “
Estimation of the local response to a forcing in a high dimensional system using the fluctuation-dissipation theorem
,”
Nonlinear Processes Geophys.
20
,
239
248
(
2013
).
7.
T. L.
Bell
, “
Climate sensitivity from fluctuation dissipation: Some simple model tests
,”
J. Atmos. Sci.
37
,
1700
1707
(
1980
).
8.
A.
Gritsun
and
V.
Dymnikov
, “
Barotropic atmosphere response to small external actions: Theory and numerical experiments
,”
Izv. Akad. Nauk. Fiz. Atmos. Okeana. Biol.
35
(5),
511
525
(
1999
).
9.
R. V.
Abramov
and
A. J.
Majda
, “
A new algorithm for low-frequency climate response
,”
J. Atmos. Sci.
66
,
286
309
(
2009
).
10.
V. P.
Dymnikov
and
A. S.
Gritsoun
, “
Climate model attractors: Chaos, quasi-regularity and sensitivity to small perturbations of external forcing
,”
Nonlinear Process Geophys.
8
,
201
209
(
2001
).
11.
G. R.
North
,
R. E.
Bell
, and
J. W.
Hardin
, “
Fluctuation dissipation in a general circulation model
,”
Clim. Dyn.
8
,
259
264
(
1993
).
12.
I.
Cionni
,
G.
Visconti
, and
F.
Sassi
, “
Fluctuation dissipation theorem in a general circulation model
,”
Geophys. Res. Lett.
31
,
L09206
, https://doi.org/10.1029/2004GL019739 (
2004
).
13.
A.
Gritsun
,
G.
Branstator
, and
V.
Dymnikov
, “
Construction of the linear response operator of an atmospheric general circulation model to small external forcing
,”
Russ. J. Numer. Anal. Math. Model.
17
,
399
416
(
2002
).
14.
A.
Gritsun
and
G.
Branstator
, “
Climate response using a three-dimensional operator based on the fluctuation-dissipation theorem
,”
J. Atmos. Sci.
64
,
2558
2575
(
2007
).
15.
A.
Gritsun
,
G.
Branstator
, and
A.
Majda
, “
Climate response of linear and quadratic functionals using the fluctuation-dissipation theorem
,”
J. Atmos. Sci.
65
,
2824
2829
(
2008
).
16.
M. J.
Ring
and
R. A.
Plumb
, “
The response of a simplified GCM to axisymmetric forcings: Applicability of the fluctuation–dissipation theorem
,”
J. Atmos. Sci.
65
,
3880
3898
(
2008
).
17.
A. S.
Gritsun
, “
Construction of response operators to small external forcings for atmospheric general circulation models with time periodic right-hand sides
,”
Izv., Atmos. Oceanic Phys.
46
,
748
756
(
2010
).
18.
P. L.
Langen
and
V. A.
Alexeev
, “
Estimating 2 ×{CO}2 warming in an aquaplanet GCM using the fluctuation-dissipation theorem
,”
Geophys. Res. Lett.
32
,
l23708
, https://doi.org/10.1029/2005GL024136 (
2005
).
19.
D. B.
Kirk-Davidoff
, “
On the diagnosis of climate sensitivity using observations of fluctuations
,”
Atmos. Chem. Phys.
9
,
813
822
(
2009
).
20.
D.
Fuchs
,
S.
Sherwood
, and
D.
Hernandez
, “
An exploration of multivariate fluctuation dissipation operators and their response to sea surface temperature perturbations
,”
J. Atmos. Sci.
72
,
472
486
(
2014
).
21.
F.
Ragone
,
V.
Lucarini
, and
F.
Lunkeit
, “
A new framework for climate sensitivity and prediction: A modelling perspective
,”
Clim. Dyn.
46
,
1459
1471
(
2016
).
22.
D.
Ruelle
, “
Differentiation of SRB states
,”
Commun. Math. Phys.
187
,
227
241
(
1997
).
23.
D.
Ruelle
, “
General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium
,”
Phys. Lett. A
245
,
220
224
(
1998
).
24.
D.
Ruelle
, “
A review of linear response theory for general differentiable dynamical systems
,”
Nonlinearity
22
,
855
870
(
2009
).
25.
D.
Ruelle
, “
Structure and f-dependence of the A.C.I.M. for a unimodal map f of Misiurewicz type
,”
Commun. Math. Phys.
287
,
1039
1070
(
2009
).
26.
V.
Baladi
and
D.
Smania
, “
Linear response formula for piecewise expanding unimodal maps
,”
Nonlinearity
21
,
677
711
(
2008
).
27.
V.
Baladi
and
D.
Smania
, “
Alternative proofs of linear response for piecewise expanding unimodal maps
,”
Ergodic Theory Dyn. Syst.
30
,
1
20
(
2010
).
28.
V.
Baladi
, “Linear response, or else,” in ICM Seoul 2014, Proceedings, Volume III (ICM, 2014), pp. 525–545, e-print arXiv:1408.2937 [math.DS].
29.
V.
Baladi
,
M.
Benedicks
, and
D.
Schnellmann
, “
Whitney-Hölder continuity of the SRB measure for transversal families of smooth unimodal maps
,”
Invent. Math.
201
,
773
844
(
2015
).
30.
A.
De Lima
and
D.
Smania
, “
Central limit theorem for the modulus of continuity of averages of observables on transversal families of piecewise expanding unimodal maps
,”
J. Inst. Math. Jussieu
17
,
673
733
(
2018
).
31.
G.
Gallavotti
and
E. G. D.
Cohen
, “
Dynamical ensembles in nonequilibrium statistical mechanics
,”
Phys. Rev. Lett.
74
,
2694
2697
(
1995
).
32.
G.
Gallavotti
and
E.
Cohen
, “
Dynamical ensembles in stationary states
,”
J. Stat. Phys.
80
,
931
970
(
1995
).
33.
G.
Gallavotti
, “Nonequilibrium and fluctuation relation,” preprint arXiv:1906.10069 (2019).
34.
P.
Hänggi
, “
Stochastic processes 2: Response theory and fluctuation theorems
,”
Helv. Phys. Acta
51
,
202
219
(
1978
).
35.
M.
Hairer
and
A. J.
Majda
, “
A simple framework to justify linear response theory
,”
Nonlinearity
23
,
909
(
2010
).
36.
C. L.
Wormell
and
G. A.
Gottwald
, “
On the validity of linear response theory in high-dimensional deterministic dynamical systems
,”
J. Stat. Phys.
172
,
1479
1498
(
2018
).
37.
K.
Kaneko
, “
Globally coupled chaos violates the law of large numbers but not the central-limit theorem
,”
Phys. Rev. Lett.
65
,
1391
(
1990
).
38.
T.
Shibata
,
T.
Chawanya
, and
K.
Kaneko
, “
Noiseless collective motion out of noisy chaos
,”
Phys. Rev. Lett.
82
,
4424
(
1999
).
39.
A. S.
Pikovsky
and
J.
Kurths
, “
Do globally coupled maps really violate the law of large numbers?
,”
Phys. Rev. Lett.
72
,
1644
1646
(
1994
).
40.
S. V.
Ershov
and
A. B.
Potapov
, “
On mean field fluctuations in globally coupled maps
,”
Phys. D Nonlinear Phenom.
86
,
523
558
(
1995
).
41.
S. V.
Ershov
and
A. B.
Potapov
, “
On mean field fluctuations in globally coupled logistic-type maps
,”
Phys. D Nonlinear Phenom.
106
,
9
38
(
1997
).
42.
F.
Sélley
and
P.
Bálint
, “
Mean-field coupling of identical expanding circle maps
,”
J. Stat. Phys.
164
,
858
889
(
2016
).
43.
G. A.
Gottwald
,
J. P.
Wormell
, and
J.
Wouters
, “
On spurious detection of linear response and misuse of the fluctuation-dissipation theorem in finite time series
,”
Phys. D
331
,
89
101
(
2016
).
44.
M.
Lyubich
, “
Almost every real quadratic map is either regular or stochastic
,”
Ann. Math.
156
,
1
78
(
2002
).
45.
P.
Collet
and
J.-P.
Eckmann
, “
Positive Liapunov exponents and absolute continuity for maps of the interval
,”
Ergodic Theory Dyn. Syst.
3
,
13
46
(
1983
).
46.
J. F.
Alves
,
S.
Luzzatto
, and
V.
Pinheiro
, “
Lyapunov exponents and rates of mixing for one-dimensional maps
,”
Ergodic Theory Dynam. Syst.
24
,
637
657
(
2004
).
47.
I.
Melbourne
and
M.
Nicol
, “
Large deviations for nonuniformly hyperbolic systems
,”
Trans. Amer. Math. Soc.
360
,
6661
6676
(
2008
).
48.
L. N.
Trefethen
,
Approximation Theory and Approximation Practice
(
SIAM
,
Philadelphia, PA
,
2013
).
49.
J.
Rice
,
Mathematical Statistics and Data Analysis
(
Thomson Learning
,
Belmont, CA
,
2006
).
50.
D.
Ruelle
, “
Linear response theory for diffeomorphisms with tangencies of stable and unstable manifolds—A contribution to the Gallavotti-Cohen chaotic hypothesis
,”
Nonlinearity
31
,
5683
(
2018
).
51.
A.
Avila
,
M.
Lyubich
, and
W.
de Melo
, “
Regular or stochastic dynamics in real analytic families of unimodal maps
,”
Invent. Math.
154
,
451
550
(
2003
).
52.
V.
Baladi
and
D.
Smania
, “Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps,”
Annales Scientifiques de l’École Normale Supérieure, Serie 4
,
45
(
6
),
861
926
(
2012
).
53.
D.
Ruelle
, Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechanics, 2nd ed. Cambridge Mathematical Library (Cambridge University Press, 2004).
54.
G.
Froyland
,
S.
Lloyd
, and
A.
Quas
, “
A semi-invertible Oseledets theorem with applications to transfer operator cocycles
,”
Discrete Cont. Dyn. Syst.
33
,
3835
3860
(
2013
).
55.
J.
Buzzi
, “
Exponential decay of correlations for random Lasota–Yorke maps
,”
Commun. Math. Phys.
208
,
25
54
(
1999
).
56.
C. L.
Wormell
, “
Spectral Galerkin methods for transfer operators in uniformly expanding dynamics
,”
Numerische Mathematik
142
,
421
463
(
2019
).
57.
C. L.
Wormell
, “Poltergeist,” available at https://github.com/wormell/Poltergeist.jl and in the Julia package repository.
58.
When randomly searching for equilibria it is important to make sure that, as well as randomly initializing q0(j), the distribution from which q0(j) are sampled is also randomly initialized, as up to an error term of O(M1/2) the macroscopic dynamics are deterministic functions of the initial measures of the microscopic variables μ0a.
59.
P.
Collet
and
J.-P.
Eckmann
,
Concepts and Results in Chaotic Dynamics: A Short Course
(
Springer Science & Business Media
,
Berlin
,
2007
).
60.
G. A.
Gottwald
and
I.
Melbourne
, “
A test for a conjecture on the nature of attractors for smooth dynamical systems
,”
Chaos
24
,
024403
(
2014
).
61.
R. V.
Abramov
, “
Approximate linear response for slow variables of dynamics with explicit time scale separation
,”
J. Comput. Phys.
229
,
7739
7746
(
2010
).
62.
M.
Pollicott
, “
Meromorphic extensions of generalised zeta functions
,”
Invent. Math.
85
,
147
164
(
1986
).
63.
P.
Cvitanovic
and
B.
Eckhardt
, “
Periodic orbit expansions for classical smooth flows
,”
J. Phys. A Math. Gen.
24
,
L237
L241
(
1991
).
64.
B.
Eckhardt
and
S.
Grossmann
, “
Correlation functions in chaotic systems from periodic orbits
,”
Phys. Rev. E
50
,
4571
4576
(
1994
).
65.
G. A.
Gottwald
and
I.
Melbourne
, “
Homogenization for deterministic maps and multiplicative noise
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
469
,
20130201
(
2013
).
You do not currently have access to this content.