In this work, we employ reservoir computing, a recently developed machine learning technique, to predict the time evolution of neuronal activity produced by the Hindmarsh-Rose neuronal model. Our results show accurate short- and long-term predictions for periodic (tonic and bursting) neuronal behaviors, but only short-term accurate predictions for chaotic neuronal states. However, after the accuracy of the short-term predictability deteriorates in the chaotic regime, the predicted output continues to display similarities with the actual neuronal behavior. This is reinforced by a striking resemblance between the bifurcation diagrams of the actual and of the predicted outputs. Error analyses of the reservoir’s performance are consistent with standard results previously obtained.

1.
G.
Tanaka
,
T.
Yamane
,
J. B.
Héroux
,
R.
Nakane
,
N.
Kanazawa
,
S.
Takeda
,
H.
Numata
,
D.
Nakano
, and
A.
Hirose
, “
Recent advances in physical reservoir computing: A review
,”
Neural Netw.
115
,
100
123
(
2019
).
2.
L.
Larger
,
A.
Baylón-Fuentes
,
R.
Martinenghi
,
V. S.
Udaltsov
,
Y. K.
Chembo
, and
M.
Jacquot
, “
High-speed photonic reservoir computing using a time-delay-based architecture: Million words per second classification
,”
Phys. Rev. X
7
,
011015
(
2017
).
3.
H. O.
Sillin
,
R.
Aguilera
,
H.-H.
Shieh
,
A. V.
Avizienis
,
M.
Aono
,
A. Z.
Stieg
, and
J. K.
Gimzewski
, “
A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing
,”
Nanotechnology
24
,
384004
(
2013
).
4.
J. C.
Coulombe
,
M. C.
York
, and
J.
Sylvestre
, “
Computing with networks of nonlinear mechanical oscillators
,”
PLoS One
12
,
e0178663
(
2017
).
5.
M. C.
Soriano
,
D.
Brunner
,
M.
Escalona-Morán
,
C. R.
Mirasso
, and
I.
Fischer
, “
Minimal approach to neuro-inspired information processing
,”
Front. Comput. Neurosci.
9
,
68
(
2015
).
6.
C.
Fernando
and
S.
Sojakka
, “Pattern recognition in a bucket,” in European Conference on Artificial Life (Springer, 2003), pp. 588–597.
7.
S. M.
Stigler
, “
Who discovered Bayes’s theorem?
,”
Am. Stat.
37
,
290
296
(
1983
).
8.
S. M.
Stigler
, The History of Statistics: The measurement of uncertainty before 1900 (Harvard University Press, 1986), Chap. 3.
9.
A. L.
Samuel
, “
Some studies in machine learning using the game of checkers
,”
IBM J. Res. Dev.
3
,
71
105
(
1959
).
10.
J.
von Neumann
, First Draft of the Report on the EDVAC—National Bureau of Standards, 1945.
11.
Just for curiosity, von Neumann’s proposed the use of vacuum tubes, capable of operating in 1μs, as opposed to relays which operated in 10 ms.
12.
A.
Turing
, “
Computing machinery and intelligence
,”
Mind
49
,
433
460
(
1950
).
13.
M.
Minsky
,
The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind
(
Simon and Schuster
,
2007
).
14.
C.
Goller
and
A.
Kuchler
, “Learning task-dependent distributed representations by backpropagation through structure,” in Proceedings of International Conference on Neural Networks (ICNN’96) (IEEE, 1996), Vol. 1, pp. 347–352.
15.
T.
Mikolov
,
M.
Karafiát
,
L.
Burget
,
J.
Černockỳ
, and
S.
Khudanpur
, “Recurrent neural network based language model,” in Eleventh Annual Conference of the International Speech Communication Association (2010).
16.
T.
Ge
,
Y.
Cui
,
W.
Lin
,
J.
Kurths
, and
C.
Liu
, “
Characterizing time series: When Granger causality triggers complex networks
,”
New J. Phys.
14
,
083028
(
2012
).
17.
Y.
Tang
,
X.
Xing
,
H. R.
Karimi
,
L.
Kocarev
, and
J.
Kurths
, “
Tracking control of networked multi-agent systems under new characterizations of impulses and its applications in robotic systems
,”
IEEE Trans. Ind. Electron.
63
,
1299
1307
(
2015
).
18.
R.
Follmann
,
E. E.
Macau
,
E.
Rosa
, and
J. R.
Piqueira
, “
Phase oscillatory network and visual pattern recognition
,”
IEEE Trans. Neural Netw. Learn. Syst.
26
,
1539
1544
(
2015
).
19.
J.-M.
Ramirez
,
T.
Dashevskiy
,
I. A.
Marlin
, and
N.
Baertsch
, “
Microcircuits in respiratory rhythm generation: Commonalities with other rhythm generating networks and evolutionary perspectives
,”
Curr. Opin. Neurobiol.
41
,
53
61
(
2016
).
20.
H.
Jaeger
and
H.
Haas
, “
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
,”
Science
304
,
78
80
(
2004
).
21.
H.
Jaeger
, “The ‘echo state’ approach to analysing and training recurrent neural networks-with an erratum note,” GMD Technical Report (German National Research Center for Information Technology, Bonn, 2001), Vol. 148, p. 13.
22.
J.
Pathak
,
Z.
Lu
,
B. R.
Hunt
,
M.
Girvan
, and
E.
Ott
, “
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
,”
Chaos
27
,
121102
(
2017
).
23.
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
Z.
Lu
, and
E.
Ott
, “
Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,”
Phys. Rev. Lett.
120
,
024102
(
2018
).
24.
Z.
Lu
,
B. R.
Hunt
, and
E.
Ott
, “
Attractor reconstruction by machine learning
,”
Chaos
28
,
061104
(
2018
).
25.
T. L.
Carroll
, “
Using reservoir computers to distinguish chaotic signals
,”
Phys. Rev. E
98
,
052209
(
2018
).
26.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
(
2015
).
27.
A.
Jalalvand
,
G.
Van Wallendael
, and
R.
Van de Walle
, “Real-time reservoir computing network-based systems for detection tasks on visual contents,” in 2015 7th International Conference on Computational Intelligence, Communication Systems and Networks (IEEE, 2015), pp. 146–151.
28.
T. L.
Carroll
and
L. M.
Pecora
, “Network structure effects in reservoir computers,”
Chaos
29
,
083130
(
2019
).
29.
D.
Verstraeten
,
B.
Schrauwen
,
M.
d’Haene
, and
D.
Stroobandt
, “
An experimental unification of reservoir computing methods
,”
Neural Netw.
20
,
391
403
(
2007
).
30.
J. L.
Hindmarsh
and
R.
Rose
, “
A model of neuronal bursting using three coupled first order differential equations
,”
Proc. R. Soc. Lond. B
221
,
87
102
(
1984
).
31.
W.
Maass
,
T.
Natschläger
, and
H.
Markram
, “
Real-time computing without stable states: A new framework for neural computation based on perturbations
,”
Neural Comput.
14
,
2531
2560
(
2002
).
32.
M.
Lukoševičius
and
H.
Jaeger
, “
Reservoir computing approaches to recurrent neural network training
,”
Comput. Sci. Rev.
3
,
127
149
(
2009
).
33.
A.
Shilnikov
and
G.
Cymbalyuk
, “
Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe
,”
Phys. Rev. Lett.
94
,
048101
(
2005
).
34.
F.
Fröhlich
and
M.
Bazhenov
, “
Coexistence of tonic firing and bursting in cortical neurons
,”
Phys. Rev. E
74
,
031922
(
2006
).
35.
R.
Follmann
,
A.
Shaffer
,
Z.
Mobille
,
G.
Rutherford
, and
E.
Rosa
, “
Synchronous tonic-to-bursting transitions in a neuronal hub motif
,”
Chaos
28
,
106315
(
2018
).
36.
M.
Burek
,
R.
Follmann
, and
E.
Rosa
, “
Temperature effects on neuronal firing rates and tonic-to-bursting transitions
,”
Biosystems
180
,
1
6
(
2019
).
37.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
(
1998
).
You do not currently have access to this content.