Cooperation is an effective manner to enable different elements of complex networks to work well. In this work, we propose a coevolution mechanism of learning willingness in the network population: an agent will be more likely to imitate a given neighbor’s strategy if her payoff is not less than the average performance of all her neighbors. Interestingly, increase of learning willingness will greatly promote cooperation even under the environment of extremely beneficial temptation to defectors. Through a microscopic analysis, it is unveiled that cooperators are protected due to the appearance of large-size clusters. Pair approximation theory also validates all these findings. Such an adaptive mechanism thus provides a feasible solution to relieve social dilemmas and will inspire further studies.

1.
S. R.
Shalom
, “
The evolution of cooperation by Robert Axelrod
,”
J. Politics
48
,
234
236
(
1986
).
2.
C.
Darwin
,
On the Origin of Species, 1859
(
Routledge
,
2004
).
3.
M. A.
Nowak
,
Evolutionary Dynamics
(
Harvard University Press
,
2006
).
4.
M. A.
Nowak
and
K.
Sigmund
, “
Evolutionary dynamics of biological games
,”
Science
303
,
793
799
(
2004
).
5.
R. L.
Trivers
, “
The evolution of reciprocal altruism
,”
Q. Rev. Biol.
46
,
35
57
(
1971
).
6.
M. A.
Nowak
and
R. M.
May
, “
The spatial dilemmas of evolution
,”
Int. J. Bifurcat. Chaos
3
,
35
78
(
1993
).
7.
F.
Fu
,
C.
Hauert
,
M. A.
Nowak
, and
L.
Wang
, “
Reputation-based partner choice promotes cooperation in social networks
,”
Phys. Rev. E
78
,
026117
(
2008
).
8.
Z.-X.
Wu
and
P.
Holme
, “
Effects of strategy-migration direction and noise in the evolutionary spatial prisoner’s dilemma
,”
Phys. Rev. E
80
,
026108
(
2009
).
9.
J.
Tanimoto
,
Evolutionary Games with Sociophysics: Analysis of Traffic Flow and Epidemics
(
Springer
,
2018
), Vol. 17.
10.
Z.
Wang
,
M.
Jusup
,
R.-W.
Wang
,
L.
Shi
,
Y.
Iwasa
,
Y.
Moreno
, and
J.
Kurths
, “
Onymity promotes cooperation in social dilemma experiments
,”
Sci. Adv.
3
,
e1601444
(
2017
).
11.
J.
Tanimoto
, “
How does resolution of strategy affect network reciprocity in spatial prisoner’s dilemma games?
,”
Appl. Math. Comput.
301
,
36
42
(
2017
).
12.
J.
Tanimoto
and
H.
Sagara
, “
Relationship between dilemma occurrence and the existence of a weakly dominant strategy in a two-player symmetric game
,”
BioSystems
90
,
105
114
(
2007
).
13.
J. F.
Nash
et al., “
Equilibrium points in n-person games
,”
Proc. Natl. Acad. Sci. U.S.A.
36
,
48
49
(
1950
).
14.
J.
Tanimoto
, “
Coevolution of discrete, mixed, and continuous strategy systems boosts in the spatial prisoner’s dilemma and chicken games
,”
Appl. Math. Comput.
304
,
20
27
(
2017
).
15.
X.
Li
,
M.
Jusup
,
Z.
Wang
,
H.
Li
,
L.
Shi
,
B.
Podobnik
,
H. E.
Stanley
,
S.
Havlin
, and
S.
Boccaletti
, “
Punishment diminishes the benefits of network reciprocity in social dilemma experiments
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
30
35
(
2018
).
16.
Z.
Wang
,
M.
Jusup
,
L.
Shi
,
J.-H.
Lee
,
Y.
Iwasa
, and
S.
Boccaletti
, “
Exploiting a cognitive bias promotes cooperation in social dilemma experiments
,”
Nat. Commun.
9
,
2954
(
2018
).
17.
S.
Miller
and
J.
Knowles
, “
Population fluctuation promotes cooperation in networks
,”
Sci. Rep.
5
,
11054
(
2015
).
18.
Z.
Wang
,
S.
Kokubo
,
M.
Jusup
, and
J.
Tanimoto
, “
Universal scaling for the dilemma strength in evolutionary games
,”
Phys. Life Rev.
14
,
1
30
(
2015
).
19.
R. L.
Trivers
, “
The evolution of reciprocal altruism
,”
Q. Rev. Biol.
46
,
35
57
(
1971
).
20.
D. S.
Wilson
, “
Structured demes and the evolution of group-advantageous traits
,”
Am. Nat.
111
,
157
185
(
1977
).
21.
H.
Ito
and
J.
Tanimoto
, “
Scaling the phase-planes of social dilemma strengths shows game-class changes in the five rules governing the evolution of cooperation
,”
R. Soc. Open Sci.
5
,
181085
(
2018
).
22.
W. D.
Hamilton
, “
The genetical evolution of social behaviour. II
,”
J. Theor. Biol.
7
,
17
52
(
1964
).
23.
K. A.
Kabir
,
J.
Tanimoto
, and
Z.
Wang
, “
Influence of bolstering network reciprocity in the evolutionary spatial prisoner’s dilemma game: A perspective
,”
Eur. Phys. J. B
91
,
312
(
2018
).
24.
G.
Szabó
and
G.
Fath
, “
Evolutionary games on graphs
,”
Phys. Rep.
446
,
97
216
(
2007
).
25.
M. A.
Nowak
and
R. M.
May
, “
Evolutionary games and spatial chaos
,”
Nature
359
,
826
(
1992
).
26.
S.
Assenza
,
J.
Gómez-Gardeñes
, and
V.
Latora
, “
Enhancement of cooperation in highly clustered scale-free networks
,”
Phys. Rev. E
78
,
017101
(
2008
).
27.
F. C.
Santos
and
J. M.
Pacheco
, “
Scale-free networks provide a unifying framework for the emergence of cooperation
,”
Phys. Rev. Lett.
95
,
098104
(
2005
).
28.
B. E.
Bollobás
,
O.
Riordan
,
J.
Spencer
, and
G.
Tusnády
, “
The degree sequence of a scale-free random graph process
,”
Random Struct. Algorithms
18
,
279
290
(
2001
).
29.
Z.
Wang
,
L.
Wang
,
A.
Szolnoki
, and
M.
Perc
, “
Evolutionary games on multilayer networks: A colloquium
,”
Eur. Phys. J. B
88
,
124
(
2015
).
30.
C.
Xia
,
Q.
Miao
,
J.
Wang
, and
S.
Ding
, “
Evolution of cooperation in the traveler’s dilemma game on two coupled lattices
,”
Appl. Math. Comput.
246
,
389
398
(
2014
).
31.
J.
Liu
,
H.
Meng
,
W.
Wang
,
Z.
Xie
, and
Q.
Yu
, “
Evolution of cooperation on independent networks: The influence of asymmetric information sharing updating mechanism
,”
Appl. Math. Comput.
340
,
234
241
(
2019
).
32.
Q.
Jin
,
L.
Wang
,
C.-Y.
Xia
, and
Z.
Wang
, “
Spontaneous symmetry breaking in interdependent networked game
,”
Sci. Rep.
4
,
4095
(
2014
).
33.
A.
Szolnoki
and
M.
Perc
, “
Reward and cooperation in the spatial public goods game
,”
Europhys. Lett.
92
,
38003
(
2010
).
34.
X.
Chen
,
A.
Szolnoki
, and
M.
Perc
, “
Probabilistic sharing solves the problem of costly punishment
,”
New J. Phys.
16
,
083016
(
2014
).
35.
C.
Shen
,
C.
Chu
,
L.
Shi
,
M.
Perc
, and
Z.
Wang
, “
Aspiration-based coevolution of link weight promotes cooperation in the spatial prisoner’s dilemma game
,”
R. Soc. Open Sci.
5
,
180199
(
2018
).
36.
W.
Chen
,
T.
Wu
,
Z.
Li
, and
L.
Wang
, “
Coevolution of aspirations and cooperation in spatial prisoner’s dilemma game
,”
J. Stat. Mech. Theory Exp.
2015
,
P01032
(
2015
).
37.
C.
Liu
,
H.
Guo
,
Z.
Li
,
X.
Gao
, and
S.
Li
, “
Coevolution of multi-game resolves social dilemma in network population
,”
Appl. Math. Comput.
341
,
402
407
(
2019
).
38.
A.
Szolnoki
and
M.
Perc
, “
Coevolution of teaching activity promotes cooperation
,”
New J. Phys.
10
,
043036
(
2008
).
39.
A.
Szolnoki
and
M.
Perc
, “
Promoting cooperation in social dilemmas via simple coevolutionary rules
,”
Eur. Phys. J. B
67
,
337
344
(
2009
).
40.
M.
Perc
and
A.
Szolnoki
, “
Coevolutionary games—A mini review
,”
BioSystems
99
,
109
125
(
2010
).
41.
C.
Chu
,
X.
Hu
,
C.
Shen
,
T.
Li
,
S.
Boccaletti
,
L.
Shi
, and
Z.
Wang
, “
Self-organized interdependence among populations promotes cooperation by means of coevolution
,”
Chaos
29
,
013139
(
2019
).
42.
C.
Xia
,
S.
Ding
,
C.
Wang
,
J.
Wang
, and
Z.
Chen
, “
Risk analysis and enhancement of cooperation yielded by the individual reputation in the spatial public goods game
,”
IEEE Syst. J.
11
,
1516
1525
(
2017
).
43.
C.
Wang
,
L.
Wang
,
J.
Wang
,
S.
Sun
, and
C.
Xia
, “
Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices
,”
Appl. Math. Comput.
293
,
18
29
(
2017
).
44.
M.-H.
Chen
,
L.
Wang
,
S.-W.
Sun
,
J.
Wang
, and
C.-Y.
Xia
, “
Evolution of cooperation in the spatial public goods game with adaptive reputation assortment
,”
Phys. Lett. A
380
,
40
47
(
2016
).
45.
X.
Chen
and
A.
Szolnoki
, “
Individual wealth-based selection supports cooperation in spatial public goods games
,”
Sci. Rep.
6
,
32802
(
2016
).
46.
P.
Zhu
,
X.
Song
,
L.
Liu
,
Z.
Wang
, and
J.
Han
, “
Stochastic analysis of multiplex Boolean networks for understanding epidemic propagation
,”
IEEE Access
6
,
35292
35304
(
2018
).
47.
A.
Szolnoki
and
M.
Perc
, “
Coevolutionary success-driven multigames
,”
Europhys. Lett.
108
,
28004
(
2014
).
48.
Z.
Wang
,
Y.
Liu
,
L.
Wang
, and
Y.
Zhang
, “
Freezing period strongly impacts the emergence of a global consensus in the voter model
,”
Sci. Rep.
4
,
3597
(
2014
).
49.
A.-L.
Barabâsi
,
H.
Jeong
,
Z.
Néda
,
E.
Ravasz
,
A.
Schubert
, and
T.
Vicsek
, “
Evolution of the social network of scientific collaborations
,”
Physica A
311
,
590
614
(
2002
).
50.
L.
Cao
,
H.
Ohtsuki
,
B.
Wang
, and
K.
Aihara
, “
Evolution of cooperation on adaptively weighted networks
,”
J. Theor. Biol.
272
,
8
15
(
2011
).
51.
A.
Szolnoki
and
G.
Szabó
, “
Cooperation enhanced by inhomogeneous activity of teaching for evolutionary prisoner’s dilemma games
,”
Europhys. Lett.
77
,
30004
(
2007
).
52.
R. J.
Glauber
, “
Time-dependent statistics of the Ising model
,”
J. Math. Phys.
4
,
294
307
(
1963
).
53.
D. P.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Simulations in Statistical Physics
(
Cambridge University Press
,
2014
).
54.
J.
Zhang
,
W.-Y.
Wang
,
W.-B.
Du
, and
X.-B.
Cao
, “
Evolution of cooperation among mobile agents with heterogenous view radii
,”
Physica A
390
,
2251
2257
(
2011
).
55.
W.-J.
Yuan
and
C.-Y.
Xia
, “
Role of investment heterogeneity in the cooperation on spatial public goods game
,”
PLoS One
9
,
e91012
(
2014
).
56.
G.
Szabó
and
C.
Hauert
, “
Evolutionary prisoner’s dilemma games with voluntary participation
,”
Phys. Rev. E
66
,
062903
(
2002
).
57.
M.
Perc
and
A.
Szolnoki
, “
Self-organization of punishment in structured populations
,”
New J. Phys.
14
,
043013
(
2012
).
58.
Z.
Wang
,
S.
Kokubo
,
J.
Tanimoto
,
E.
Fukuda
, and
K.
Shigaki
, “
Insight into the so-called spatial reciprocity
,”
Phys. Rev. E
88
,
042145
(
2013
).
59.
G.
Szabó
,
J.
Vukov
, and
A.
Szolnoki
, “
Phase diagrams for an evolutionary prisoner’s dilemma game on two-dimensional lattices
,”
Phys. Rev. E
72
,
047107
(
2005
).
60.
M.
Perc
and
M.
Marhl
, “
Evolutionary and dynamical coherence resonances in the pair approximated prisoner’s dilemma game
,”
New J. Phys.
8
,
142
(
2006
).
You do not currently have access to this content.