In real-world dynamical systems, technical limitations may prevent complete access to their dynamical variables. Such a lack of information may cause significant problems, especially when monitoring or controlling the dynamics of the system is required or when decisions need to be taken based on the dynamical state of the system. Cross-predicting the missing data is, therefore, of considerable interest. Here, we use a machine learning algorithm based on reservoir computing to perform cross-prediction of unknown variables of a chaotic dynamical laser system. In particular, we chose a realistic model of an optically injected single-mode semiconductor laser. While the intensity of the laser can often be acquired easily, measuring the phase of the electric field and the carriers in real time, although possible, requires a more demanding experimental scheme. We demonstrate that the dynamics of two of the three dynamical variables describing the state of the laser can be reconstructed accurately from the knowledge of only one variable, if our algorithm has been trained beforehand with all three variables for a limited period of time. We analyze the accuracy of the method depending on the parameters of the laser system and the reservoir. Finally, we test the robustness of the cross-prediction method when adding noise to the time series. The suggested reservoir computing state observer might be used in many applications, including reconstructing time series, recovering lost time series data and testing data encryption security in cryptography based on chaotic synchronization of lasers.

1.
B.
Kelleher
,
D.
Goulding
,
B. B.
Pascual
,
S. P.
Hegarty
, and
G.
Huyet
, “
Phasor plots in optical injection experiments
,”
Eur. Phys. J. D
58
,
175
179
(
2010
).
2.
D.
Brunner
,
M. C.
Soriano
,
X.
Porte
, and
I.
Fischer
, “
Experimental phase-space tomography of semiconductor laser dynamics
,”
Phys. Rev. Lett.
115
,
053901
(
2015
).
3.
S.-C.
Chan
,
S.-K.
Hwang
, and
J.-M.
Liu
, “
Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser
,”
Opt. Express
15
,
14921
14935
(
2007
).
4.
X.-Z.
Li
and
S.-C.
Chan
, “
Random bit generation using an optically injected semiconductor laser in chaos with oversampling
,”
Opt. Lett.
37
,
2163
2165
(
2012
).
5.
R.
Sakuraba
,
K.
Iwakawa
,
K.
Kanno
, and
A.
Uchida
, “
Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers
,”
Opt. Express
23
,
1470
1490
(
2015
).
6.
H.
Jaeger
, “The ‘echo state’ approach to analysing and training recurrent neural networks—With an erratum note,” GMD Technical Report (German National Research Center for Information Technology, Bonn, 2001), Vol. 148, 13p.
7.
W.
Maass
,
T.
Natschläger
, and
H.
Markram
, “
Real-time computing without stable states: A new framework for neural computation based on perturbations
,”
Neural Comput.
14
,
2531
2560
(
2002
).
8.
H.
Jaeger
and
H.
Haas
, “
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
,”
Science
304
,
78
80
(
2004
).
9.
Z.
Lu
,
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
R.
Brockett
, and
E.
Ott
, “
Reservoir observers: Model-free inference of unmeasured variables in chaotic systems
,”
Chaos
27
,
041102
(
2017
).
10.
R. S.
Zimmermann
and
U.
Parlitz
, “
Observing spatio-temporal dynamics of excitable media using reservoir computing
,”
Chaos
28
,
043118
(
2018
).
11.
D.
Verstraeten
,
B.
Schrauwen
,
M.
d’Haene
, and
D.
Stroobandt
, “
An experimental unification of reservoir computing methods
,”
Neural Netw.
20
,
391
403
(
2007
).
12.
M.
Lukoševičius
and
H.
Jaeger
, “
Reservoir computing approaches to recurrent neural network training
,”
Comput. Sci. Rev.
3
,
127
149
(
2009
).
13.
S.
Wieczorek
,
T. B.
Simpson
,
B.
Krauskopf
, and
D.
Lenstra
, “
Global quantitative predictions of complex laser dynamics
,”
Phys. Rev. E
65
,
045207
(
2002
).
14.
J.
Ohtsubo
,
Semiconductor Lasers: Stability, Instability and Chaos
(
Springer
,
2012
), Vol. 111.
15.
S.
Wieczorek
,
B.
Krauskopf
,
T. B.
Simpson
, and
D.
Lenstra
, “
The dynamical complexity of optically injected semiconductor lasers
,”
Phys. Rep.
416
,
1
128
(
2005
).
16.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics
,”
Science
238
,
632
638
(
1987
).
17.
N.
Gershenfeld
, “An experimentalist’s introduction to the observation of dynamical systems,” in Directions in Chaos (World Scientific, 1988), Vol. 2, pp. 310–353.
18.
B.
Eckhardt
and
D.
Yao
, “
Local Lyapunov exponents in chaotic systems
,”
Physica D
65
,
100
108
(
1993
).
19.
U.
Parlitz
,
J.
Schumann-Bischoff
, and
S.
Luther
, “
Local observability of state variables and parameters in nonlinear modeling quantified by delay reconstruction
,”
Chaos
24
,
024411
(
2014
).
20.
I. B.
Yildiz
,
H.
Jaeger
, and
S. J.
Kiebel
, “
Re-visiting the echo state property
,”
Neural Netw.
35
,
1
9
(
2012
).
21.
B.
Kelleher
,
D.
Goulding
,
G.
Huyet
,
E.
Viktorov
,
T.
Erneux
, and
S.
Hegarty
, “
Dimensional signature on noise-induced excitable statistics in an optically injected semiconductor laser
,”
Phys. Rev. E
84
,
026208
(
2011
).
22.
B.
Kelleher
,
D.
Goulding
,
B. B.
Pascual
,
S. P.
Hegarty
, and
G.
Huyet
, “
Bounded phase phenomena in the optically injected laser
,”
Phys. Rev. E
85
,
046212
(
2012
).
23.
R.
Vicente
,
J.
Daudén
,
P.
Colet
, and
R.
Toral
, “
Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop
,”
IEEE J. Quantum Electron.
41
,
541
548
(
2005
).
24.
M. C.
Soriano
,
J.
Garcia-Ojalvo
,
C. R.
Mirasso
, and
I.
Fischer
, “
Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers
,”
Rev. Mod. Phys.
85
,
421
(
2013
).
25.
T.
Heil
,
J.
Mulet
,
I.
Fischer
,
C. R.
Mirasso
,
M.
Peil
,
P.
Colet
, and
W.
Elsasser
, “
On/off phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers
,”
IEEE J. Quantum Electron.
38
,
1162
1170
(
2002
).
26.
A.
Argyris
,
D.
Syvridis
,
L.
Larger
,
V.
Annovazzi-Lodi
,
P.
Colet
,
I.
Fischer
,
J.
Garcia-Ojalvo
,
C. R.
Mirasso
,
L.
Pesquera
, and
K. A.
Shore
, “
Chaos-based communications at high bit rates using commercial fibre-optic links
,”
Nature
438
,
343
(
2005
).
27.
C.-H.
Cheng
,
C.-Y.
Chen
,
J.-D.
Chen
,
D.-K.
Pan
,
K.-T.
Ting
, and
F.-Y.
Lin
, “
3d pulsed chaos lidar system
,”
Opt. Express
26
,
12230
12241
(
2018
).
28.
G.
Van der Sande
,
D.
Brunner
, and
M. C.
Soriano
, “
Advances in photonic reservoir computing
,”
Nanophotonics
6
,
561
576
(
2017
).
You do not currently have access to this content.