Forecasting the dynamics of chaotic systems from the analysis of their output signals is a challenging problem with applications in most fields of modern science. In this work, we use a laser model to compare the performance of several machine learning algorithms for forecasting the amplitude of upcoming emitted chaotic pulses. We simulate the dynamics of an optically injected semiconductor laser that presents a rich variety of dynamical regimes when changing the parameters. We focus on a particular dynamical regime that can show ultrahigh intensity pulses, reminiscent of rogue waves. We compare the goodness of the forecast for several popular methods in machine learning, namely, deep learning, support vector machine, nearest neighbors, and reservoir computing. Finally, we analyze how their performance for predicting the height of the next optical pulse depends on the amount of noise and the length of the time series used for training.

1.
J.
Ohtsubo
,
Semiconductor Lasers: Stability, Instability and Chaos
(
Springer
,
2012
), Vol. 111.
2.
S.
Wieczorek
,
B.
Krauskopf
,
T. B.
Simpson
, and
D.
Lenstra
, “
The dynamical complexity of optically injected semiconductor lasers
,”
Phys. Rep.
416
,
1
128
(
2005
).
3.
E. K.
Lau
,
X.
Zhao
,
H.-K.
Sung
,
D.
Parekh
,
C.
Chang-Hasnain
, and
M. C.
Wu
, “
Strong optical injection-locked semiconductor lasers demonstrating >100-GHz resonance frequencies and 80-GHz intrinsic bandwidths
,”
Opt. Express
16
,
6609
6618
(
2008
).
4.
K.-H.
Lo
,
S.-K.
Hwang
, and
S.
Donati
, “
Numerical study of ultrashort-optical-feedback-enhanced photonic microwave generation using optically injected semiconductor lasers at period-one nonlinear dynamics
,”
Opt. Express
25
,
31595
31611
(
2017
).
5.
C.
Xue
,
S.
Ji
,
A.
Wang
,
N.
Jiang
,
K.
Qiu
, and
Y.
Hong
, “
Narrow-linewidth single-frequency photonic microwave generation in optically injected semiconductor lasers with filtered optical feedback
,”
Opt. Lett.
43
,
4184
4187
(
2018
).
6.
X.-Z.
Li
and
S.-C.
Chan
, “
Heterodyne random bit generation using an optically injected semiconductor laser in chaos
,”
IEEE J. Quantum Electron.
49
,
829
838
(
2013
).
7.
N.
Köllisch
,
J.
Behrendt
,
M.
Klein
, and
N.
Hoffmann
, “
Nonlinear real time prediction of ocean surface waves
,”
Ocean Eng.
157
,
387
400
(
2018
).
8.
C.
Franzke
, “
Predictability of extreme events in a nonlinear stochastic-dynamical model
,”
Phys. Rev. E
85
,
031134
(
2012
).
9.
S.
Birkholz
,
C.
Brée
,
A.
Demircan
, and
G.
Steinmeyer
, “
Predictability of rogue events
,”
Phys. Rev. Lett.
114
,
213901
(
2015
).
10.
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
Z.
Lu
, and
E.
Ott
, “
Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,”
Phys. Rev. Lett.
120
,
024102
(
2018
).
11.
J.
Isensee
,
G.
Datseris
, and
U.
Parlitz
, “Predicting spatio-temporal time series using dimension reduced local states,”
J. Nonlinear Sci.
(
2019
).
12.
S.
Bialonski
,
G.
Ansmann
, and
H.
Kantz
, “
Data-driven prediction and prevention of extreme events in a spatially extended excitable system
,”
Phys. Rev. E
92
,
042910
(
2015
).
13.
T.
Kuremoto
,
S.
Kimura
,
K.
Kobayashi
, and
M.
Obayashi
, “
Time series forecasting using a deep belief network with restricted Boltzmann machines
,”
Neurocomputing
137
,
47
56
(
2014
).
14.
J.
Wang
,
D.
Chi
,
J.
Wu
, and
H.-Y.
Lu
, “
Chaotic time series method combined with particle swarm optimization and trend adjustment for electricity demand forecasting
,”
Expert Syst. Appl.
38
,
8419
8429
(
2011
).
15.
M.
Ardalani-Farsa
and
S.
Zolfaghari
, “
Chaotic time series prediction with residual analysis method using hybrid Elman–NARX neural networks
,”
Neurocomputing
73
,
2540
2553
(
2010
).
16.
A.
Gholipour
,
B. N.
Araabi
, and
C.
Lucas
, “
Predicting chaotic time series using neural and neurofuzzy models: A comparative study
,”
Neural Process. Lett.
24
,
217
239
(
2006
).
17.
K.
Lau
and
Q.
Wu
, “
Local prediction of non-linear time series using support vector regression
,”
Pattern Recognit.
41
,
1539
1547
(
2008
).
18.
S.
Perrone
,
R.
Vilaseca
,
J.
Zamora-Munt
, and
C.
Masoller
, “
Controlling the likelihood of rogue waves in an optically injected semiconductor laser via direct current modulation
,”
Phys. Rev. A
89
,
033804
(
2014
).
19.
N.
Akhmediev
,
B.
Kibler
,
F.
Baronio
,
M.
Belić
,
W.-P.
Zhong
,
Y.
Zhang
,
W.
Chang
,
J. M.
Soto-Crespo
,
P.
Vouzas
,
P.
Grelu
et al.,
Roadmap on optical rogue waves and extreme events
,”
J. Opt.
18
,
063001
(
2016
).
20.
C.
Bonatto
,
M.
Feyereisen
,
S.
Barland
,
M.
Giudici
,
C.
Masoller
,
J. R. R.
Leite
, and
J. R.
Tredicce
, “
Deterministic optical rogue waves
,”
Phys. Rev. Lett.
107
,
053901
(
2011
).
21.
H. L. D. S.
Cavalcante
,
M.
Oriá
,
D.
Sornette
,
E.
Ott
, and
D. J.
Gauthier
, “
Predictability and suppression of extreme events in a chaotic system
,”
Phys. Rev. Lett.
111
,
198701
(
2013
).
22.
J.
Zamora-Munt
,
B.
Garbin
,
S.
Barland
,
M.
Giudici
,
J. R. R.
Leite
,
C.
Masoller
, and
J. R.
Tredicce
, “
Rogue waves in optically injected lasers: Origin, predictability, and suppression
,”
Phys. Rev. A
87
,
035802
(
2013
).
23.
M.
San Miguel
and
R.
Toral
, “Stochastic effects in physical systems,” in Instabilities and Nonequilibrium Structures VI (Springer, 2000), pp. 35–127.
24.
Z.
He
,
X.
Wen
,
H.
Liu
, and
J.
Du
, “
A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region
,”
J. Hydrol.
509
,
379
386
(
2014
).
25.
N. S.
Altman
, “
An introduction to kernel and nearest-neighbor nonparametric regression
,”
Am. Stat.
46
,
175
185
(
1992
).
26.
B. E.
Boser
,
I. M.
Guyon
, and
V. N.
Vapnik
, “A training algorithm for optimal margin classifiers,” in Proceedings of the Fifth Annual Workshop on Computational Learning Theory (ACM, 1992), pp. 144–152.
27.
V.
Vapnik
,
The Nature of Statistical Learning Theory
(
Springer Science & Business Media
,
2013
).
28.
T.-M.
Huang
,
V.
Kecman
, and
I.
Kopriva
,
Kernel Based Algorithms for Mining Huge Data Sets
(
Springer
,
2006
), Vol. 1.
29.
H.
Drucker
,
C. J.
Burges
,
L.
Kaufman
,
A. J.
Smola
, and
V.
Vapnik
, “Support vector regression machines,” in Advances in Neural Information Processing Systems (MIT Press, 1997), pp. 155–161.
30.
Y.
LeCun
,
B. E.
Boser
,
J. S.
Denker
,
D.
Henderson
,
R. E.
Howard
,
W. E.
Hubbard
, and
L. D.
Jackel
, “Handwritten digit recognition with a back-propagation network,” in Advances in Neural Information Processing Systems (Morgan Kaufmann, 1990), pp. 396–404.
31.
D.
Verstraeten
,
B.
Schrauwen
,
M.
d’Haene
, and
D.
Stroobandt
, “
An experimental unification of reservoir computing methods
,”
Neural Netw.
20
,
391
403
(
2007
).
32.
A.
Rodan
and
P.
Tino
, “
Minimum complexity echo state network
,”
IEEE Trans. Neural Netw.
22
,
131
144
(
2010
).
33.
M.
Lukoševičius
and
H.
Jaeger
, “
Reservoir computing approaches to recurrent neural network training
,”
Comput. Sci. Rev.
3
,
127
149
(
2009
).
34.
L.
Larger
,
M. C.
Soriano
,
D.
Brunner
,
L.
Appeltant
,
J. M.
Gutiérrez
,
L.
Pesquera
,
C. R.
Mirasso
, and
I.
Fischer
, “
Photonic information processing beyond turing: An optoelectronic implementation of reservoir computing
,”
Opt. Express
20
,
3241
3249
(
2012
).
35.
Y.
Paquot
,
F.
Duport
,
A.
Smerieri
,
J.
Dambre
,
B.
Schrauwen
,
M.
Haelterman
, and
S.
Massar
, “
Optoelectronic reservoir computing
,”
Sci. Rep.
2
,
287
(
2012
).
36.
Y.
Kawai
,
J.
Park
, and
M.
Asada
, “
A small-world topology enhances the echo state property and signal propagation in reservoir computing
,”
Neural Netw.
112
,
15
23
(
2019
).
37.
A.
Griffith
,
A.
Pomerance
, and
D. J.
Gauthier
, “Forecasting chaotic systems with very low connectivity reservoir computers,” arXiv:1910.00659 (2019).
38.
Z. O.
Yang
,
Y.
Wang
,
D.
Li
, and
C.
Wang
, “Predict the time series of the parameter-varying chaotic system based on reduced recursive lease square support vector machine,” in 2009 International Conference on Artificial Intelligence and Computational Intelligence (IEEE, 2009), Vol. 1, pp. 29–34.
You do not currently have access to this content.