Recently, a large number of studies have concentrated on aging transition, but they have so far been restricted to coupled integer-order oscillators. Here, we report the first study of aging transition in mixed active and inactive fractional-order oscillators. It has been demonstrated that while the heterogeneity is caused by the distance parameter, both the coupling strength and the fractional-order derivative can modulate the critical ratio at which aging transition occurs. In addition, a small fractional-order derivative may ruin the ability of oscillation and, thus, reduce the critical ratio in globally coupled fractional-order Stuart-Landau oscillators. Remarkably, the larger the natural frequency is the more easily the aging transition occurs in coupled fractional-order oscillators. Further studies have shown that, being diverse from an integer-order Stuart-Landau oscillator, the natural frequency may induce a Hopf bifurcation in a fractional-order Stuart-Landau oscillator, accordingly, introducing a new heterogeneity in the coupled fractional-order Stuart-Landau oscillators. Therein, a counterintuitive phenomenon has been found that the critical ratio depends unmonotonously on the coupling strength, which implies that the coupled fractional-order Stuart-Landau oscillators possess the weakest robustness of oscillation at a certain level of coupling strength.

1.
J. J.
Hopfield
,
Proc. Natl. Acad. Sci. U. S. A.
79
,
2554
(
1982
).
2.
S.
Camazine
,
Self-organization in Biological Systems
(
Princeton University Press
,
Princeton
,
NJ
,
2003
).
3.
H. X.
Ge
,
S. Q.
Dai
,
L. Y.
Dong
, and
Y.
Xue
,
Phys. Rev. E
70
,
066134
(
2004
).
4.
L. L.
Garver
,
IEEE Trans. Power Syst.
PAS-89
,
1688
(
1970
).
6.
Z.
Néda
,
E.
Ravasz
,
Y.
Brechet
,
T.
Vicsek
, and
A. L.
Barabási
,
Nature
403
,
849
(
2000
).
7.
D. C.
Michaels
,
E. P.
Matyas
, and
J.
Jalife
,
Circ. Res.
61
,
704
(
1987
).
8.
A.
Koseska
,
E.
Volkov
, and
J.
Kurths
,
Phys. Rep.
531
,
173
(
2013
).
9.
Z.
Sun
,
N.
Zhao
,
X.
Yang
, and
W.
Xu
,
Nonlinear Dyn.
92
,
1185
(
2018
).
10.
N.
Zhao
,
Z.
Sun
, and
W.
Xu
,
Eur. Phys. J. B
91
,
20
(
2018
).
11.
N.
Zhao
,
Z.
Sun
,
X.
Yang
, and
W.
Xu
,
Phys. Rev. E
97
,
062203
(
2018
).
12.
H.
Daido
and
K.
Nakanishi
,
Phys. Rev. Lett.
93
,
104101
(
2004
).
13.
K.
Nakanishi
and
H.
Daido
,
Prog. Theor. Phys. Suppl.
161
,
173
(
2006
).
14.
H.
Daido
,
Europhys. Lett.
84
,
10002
(
2008
).
15.
16.
H.
Daido
,
N.
Kawata
,
Y.
Sano
, and
S.
Yamaguchi
,
AIP Conf. Proc.
1076
,
33
(
2008
).
17.
B.
Thakur
,
D.
Sharma
, and
A.
Sen
,
Phys. Rev. E
90
,
042904
(
2014
).
18.
B.
Rahman
,
K. B.
Blyuss
, and
Y. N.
Kyrychko
,
Phys. Rev. E
96
,
032203
(
2017
).
19.
Y.
Liu
,
W.
Zou
,
M.
Zhan
,
J.
Duan
, and
J.
Kurths
,
Europhys. Lett.
114
,
40004
(
2016
).
20.
G.
Tanaka
,
K.
Morino
,
H.
Daido
, and
K.
Aihara
,
Phys. Rev. E
89
,
052906
(
2014
).
21.
22.
Z.
Sun
,
N.
Ma
, and
W.
Xu
,
Sci. Rep.
7
,
42715
(
2017
).
23.
W.
Huang
,
X.
Zhang
,
X.
Hu
,
Y.
Zou
,
Z.
Liu
, and
S.
Guan
,
Chaos
24
,
023122
(
2014
).
24.
Z.
He
,
S.
Liu
, and
M.
Zhan
,
Physica A
392
,
4181
(
2013
).
25.
K.
Morino
,
G.
Tanaka
, and
K.
Aihara
,
Phys. Rev. E
83
,
056208
(
2011
).
26.
T.
Sasai
,
K.
Morino
,
G.
Tanaka
,
J. A.
Almendral
, and
K.
Aihara
,
PLoS One
10
,
e0123722
(
2015
).
27.
I.
Petráš
,
Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation
(
Springer
,
New York
,
2011
).
28.
C. P.
Li
and
F. R.
Zhang
,
Eur. Phys. J. Spec. Top
193
,
27
(
2011
).
29.
H.
Delavari
,
D.
Baleanu
, and
J.
Sadati
,
Nonlinear Dyn.
67
,
2433
(
2012
).
30.
C.
Li
and
Y.
Ma
,
Nonlinear Dyn.
71
,
621
(
2013
).
31.
G. S. M.
Ngueuteu
,
R.
Yamapi
, and
P.
Woafo
,
Europhys. Lett.
112
,
30004
(
2015
).
32.
R.
Zhang
,
T.
Gang
,
S.
Yang
, and
H.
Cao
,
ISA Trans.
56
,
102
(
2015
).
33.
Z.
Sun
,
R.
Xiao
,
X.
Yang
, and
W.
Xu
,
Chaos
28
,
033109
(
2018
).
34.
J.
Zhang
,
Z.
Sun
,
X.
Yang
, and
W.
Xu
,
Int. J. Bifurcation Chaos
28
,
1850137
(
2018
).
35.
R.
Xiao
,
Z.
Sun
,
X.
Yang
, and
W.
Xu
,
Commun. Nonlinear Sci. Numer. Simul.
69
,
168
(
2019
).
You do not currently have access to this content.