Stochastic feed-in of fluctuating renewable energies is steadily increasing in modern electricity grids, and this becomes an important risk factor for maintaining power grid stability. Here, we study the impact of wind power feed-in on the short-term frequency fluctuations in power grids based on an Institute of Electrical and Electronics Engineers test grid structure, the swing equation for the dynamics of voltage phase angles, and a series of measured wind speed data. External control measures are accounted for by adjusting the grid state to the average power feed-in on a time scale of 1 min. The wind power is injected at a single node by replacing one of the conventional generator nodes in the test grid by a wind farm. We determine histograms of local frequencies for a large number of 1-min wind speed sequences taken from the measured data and for different injection nodes. These histograms exhibit a common type of shape, which can be described by a Gaussian distribution for small frequencies and a nearly exponentially decaying tail part. Non-Gaussian features become particularly pronounced for wind power injection at locations, which are weakly connected to the main grid structure. This effect is only present when taking into account the heterogeneities in transmission line and node properties of the grid, while it disappears upon homogenizing of these features. The standard deviation of the frequency fluctuations increases linearly with the average injected wind power.

1.
P.
Menck
,
J.
Heitzig
,
J.
Kurths
, and
H.
Schellnhuber
,
Nat. Commun.
5
,
3969
(
2014
).
2.
P.
Schultz
,
J.
Heitzig
, and
J.
Kurths
,
Eur. Phys. J. Spec. Top.
223
,
2593
(
2014
).
3.
D.
Jung
and
S.
Kettemann
,
Phys. Rev. E
94
,
012307
(
2016
).
4.
S.
Auer
,
K.
Kleis
,
P.
Schultz
,
J.
Kurths
, and
F.
Hellmann
,
Eur. Phys. J. Spec. Top.
225
,
609
(
2016
).
5.
S.
Auer
,
F.
Hellmann
,
M.
Krause
, and
J.
Kurths
,
Chaos
27
,
127003
(
2017
).
6.
C.
Schiel
,
P. G.
Lind
, and
P.
Maass
,
Sci. Rep.
7
,
11562
(
2017
).
7.
M. F.
Wolff
,
P. G.
Lind
, and
P.
Maass
,
Chaos
28
,
103120
(
2018
).
8.
P.
Schultz
,
J.
Heitzig
, and
J.
Kurths
,
New J. Phys.
16
,
125001
(
2014
).
9.
H.
Kim
,
S. H.
Lee
,
J.
Davidsen
, and
S.-W.
Son
,
New J. Phys.
20
,
113006
(
2018
).
10.
U. P.
Müller
,
L.
Wienholt
,
D.
Kleinhans
,
I.
Cussmann
,
W.-D.
Bunke
,
G.
Pleßmann
, and
J.
Wendiggensen
,
J. Phys. Conf. Ser.
977
,
012003
(
2018
).
11.
W.
Medjroubi
and
C.
Matke
,
SciGRID—An Open Source Reference Model for the European Transmission Network (v0.2)
(2016).
12.
M.
Anghel
,
K. A.
Werley
, and
A. E.
Motter
, 40th Annual Hawaii International Conference on System Sciences (HICSS’07) (IEEE Computer Society, 2007), pp. 113–113.
13.
M.
Chertkov
,
M.
Stepanov
,
F.
Pan
, and
R.
Baldick
, in Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011, Orlando, FL, USA (IEEE, 2011), pp. 2174–2180.
14.
K.
Schmietendorf
,
J.
Peinke
,
R.
Friedrich
, and
O.
Kamps
,
Eur. Phys. J. Spec. Top.
223
,
2577
(
2014
).
15.
T.
Nishikawa
and
A.
Motter
,
New J. Phys.
17
,
015012
(
2015
).
16.
K.
Schmietendorf
,
J.
Peinke
, and
O.
Kamps
,
Eur. Phys. J. B
90
,
222
(
2017
).
17.
H.
Hähne
,
J.
Schottler
,
M.
Wächter
,
J.
Peinke
, and
O.
Kamps
,
Europhys. Lett.
121
,
30001
(
2018
).
18.
H.
Hähne
,
K.
Schmietendorf
,
S.
Tamrakar
,
J.
Peinke
, and
S.
Kettemann
,
Phys. Rev. E
99
,
050301
(
2019
).
19.
B.
Schäfer
,
C.
Beck
,
K.
Aihara
,
D.
Witthaut
, and
M.
Timme
,
Nat. Energy
3
,
119
(
2018
).
20.
R.
Albert
,
I.
Albert
, and
G. L.
Nakarado
,
Phys. Rev. E
69
,
025103
(
2004
).
21.
J.-W.
Wang
and
L.-L.
Rong
,
Saf. Sci.
47
,
1332
(
2009
).
22.
P.
Hines
,
E.
Cotilla-Sanchez
, and
S.
Blumsack
,
Chaos
20
,
033122
(
2010
).
23.
M.
Andrychowicz
and
B.
Olek
, in 13th International Conference on the European Energy Market (EEM) (IEEE, 2016), pp. 1–5.
24.
K.
Schmietendorf
,
O.
Kamps
,
M.
Wolff
,
P. G.
Lind
,
P.
Maass
, and
J.
Peinke
, “Bridging between load-flow and Kuramoto-like power grid models: A flexible approach to integrating electrical storage units,” e-print arXiv:1812.01972, 2018.
25.
C.
Grigg
,
P.
Wong
,
P.
Albrecht
,
R.
Allan
,
M.
Bhavaraju
,
R.
Billinton
,
Q.
Chen
,
C.
Fong
,
S.
Haddad
,
S.
Kuruganty
et al.,
IEEE Trans. Power Syst.
14
,
1010
(
1999
).
26.
FINO I Project and Database (2016). The FINO project is supported by the German Government through BMWi and PTJ. See http://www.bsh.de.
27.
M.
Rohden
,
A.
Sorge
,
M.
Timme
, and
D.
Witthaut
,
Phys. Rev. Lett.
109
,
064101
(
2012
).
28.
B.
Schäfer
,
D.
Witthaut
,
M.
Timme
, and
V.
Latora
,
Nat. Commun.
9
,
1975
(
2018
).
29.
S.
Tamrakar
,
M.
Conrath
, and
S.
Kettemann
,
Sci. Rep.
8
,
6459
(
2018
).
30.
J.
Machowski
,
J.
Bialek
, and
J.
Bumby
,
Power System Dynamics
(
John Wiley & Sons
,
New Jersey
,
2008
).
31.
G.
Filatrella
,
A. H.
Nielsen
, and
N. F.
Pedersen
,
Eur. Phys. J. B
61
,
485
(
2008
).
32.
See https://www.entsoe.eu for “UCTE Operation Handbook” (2004).
33.
Y.
Kuramoto
, Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, edited by H. Araki (Springer, Berlin, 1975), Vol. 39, pp. 420–422.
34.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
35.
F. A.
Rodrigues
,
T. K. D.
Peron
,
P.
Ji
, and
J.
Kurths
,
Phys. Rep.
610
,
1
(
2016
).
36.
A. E.
Motter
,
S. A.
Myers
,
M.
Anghel
, and
T.
Nishikawa
,
Nat. Phys.
9
,
191
(
2013
).
37.
A.
Trias
, in IEEE Power and Energy Society General Meeting (IEEE, 2012), pp. 1–8.
38.
P.
Milan
,
M.
Wächter
, and
J.
Peinke
,
J. Renew. Sustain. Energy
6
,
033119
(
2014
).
39.
J. F.
Manwell
,
J. G.
McGowan
, and
A. L.
Rogers
,
Wind Energy Explained
(
John Wiley & Sons
,
2009
).
40.
P. C.
Böttcher
,
A.
Otto
,
S.
Kettemann
, and
C.
Agert
, “Time delay effects in the control of synchronous electricity grids,” e-print arXiv:1907.13370v1, 2019.
41.
M.
Brune
, “
Modeling of wind speeds with the Langevin equation
,” Bachelor thesis (
Osnabrück University
,
2018
).
You do not currently have access to this content.