The prediction of complex nonlinear dynamical systems with the help of machine learning techniques has become increasingly popular. In particular, reservoir computing turned out to be a very promising approach especially for the reproduction of the long-term properties of a nonlinear system. Yet, a thorough statistical analysis of the forecast results is missing. Using the Lorenz and Rössler system, we statistically analyze the quality of prediction for different parametrizations—both the exact short-term prediction as well as the reproduction of the long-term properties (the “climate”) of the system as estimated by the correlation dimension and largest Lyapunov exponent. We find that both short- and long-term predictions vary significantly among the realizations. Thus, special care must be taken in selecting the good predictions as realizations, which deliver better short-term prediction also tend to better resemble the long-term climate of the system. Instead of only using purely random Erdös-Renyi networks, we also investigate the benefit of alternative network topologies such as small world or scale-free networks and show which effect they have on the prediction quality. Our results suggest that the overall performance with respect to the reproduction of the climate of both the Lorenz and Rössler system is worst for scale-free networks. For the Lorenz system, there seems to be a slight benefit of using small world networks, while for the Rössler system, small world and Erdös-Renyi networks performed equivalently well. In general, the observation is that reservoir computing works for all network topologies investigated here.

1.
J.
Theiler
,
S.
Eubank
,
A.
Longtin
,
B.
Galdrikian
, and
J.
Doyne Farmer
, “
Testing for nonlinearity in time series: The method of surrogate data
,”
Physica D
58
,
77
94
(
1992
).
2.
Z.
Lu
,
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
R.
Brockett
, and
E.
Ott
, “
Reservoir observers: Model-free inference of unmeasured variables in chaotic systems
,”
Chaos
27
,
041102
(
2017
).
3.
J.
Pathak
,
Z.
Lu
,
B. R.
Hunt
,
M.
Girvan
, and
E.
Ott
, “
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
,”
Chaos
27
,
121102
(
2017
).
4.
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
Z.
Lu
, and
E.
Ott
, “
Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,”
Phys. Rev. Lett.
120
,
024102
(
2018
).
5.
J.
Pathak
,
A.
Wikner
,
R.
Fussell
,
S.
Chandra
,
B. R.
Hunt
,
M.
Girvan
, and
E.
Ott
, “
Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model
,”
Chaos
28
,
041101
(
2018
); e-print arXiv:1803.04779.
6.
R. S.
Zimmermann
and
U.
Parlitz
, “
Observing spatio-temporal dynamics of excitable media using reservoir computing
,”
Chaos
28
,
043118
(
2018
).
7.
T. L.
Carroll
, “
Using reservoir computers to distinguish chaotic signals
,”
Phys. Rev. E
98
,
052209
(
2018
); e-print arXiv:1810.04574.
8.
Z.
Lu
,
B. R.
Hunt
, and
E.
Ott
, “
Attractor reconstruction by machine learning
,”
Chaos
28
,
061104
(
2018
).
9.
P.
Antonik
,
M.
Gulina
,
J.
Pauwels
, and
S.
Massar
, “
Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography
,”
Phys. Rev. E
98
,
012215
(
2018
).
10.
W.
Maass
,
T.
Natschlaeger
, and
H.
Markram
, “
Real-time computing without stable states: A new framework for neural computation based on perturbations
,”
Neural Comput.
14
,
2531
2560
(
2002
).
11.
H.
Jaeger
and
H.
Haas
, “
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
,”
Science
304
,
78
80
(
2004
).
12.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
(
1998
).
13.
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
97
(
2002
); e-print arXiv:cond-mat/0106096.
14.
A. D.
Broido
and
A.
Clauset
, “Scale-free networks are rare,”
Nature Commun.
10
,
1017
(
2019
).
15.
M.
Gerlach
and
E. G.
Altmann
, “Testing statistical laws in complex systems,”
Phys. Rev. Lett.
122
,
168301
(
2019
).
16.
H.
Cui
,
X.
Liu
, and
L.
Li
, “
The architecture of dynamic reservoir in the echo state network
,”
Chaos
22
,
033127
(
2012
).
17.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
18.
Z.
Lu
,
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
R.
Brockett
, and
E.
Ott
, “
Reservoir observers: Model-free inference of unmeasured variables in chaotic systems
,”
Chaos
27
,
041102
(
2017
).
19.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
398
(
1976
).
20.
M.
Lukoševičius
and
H.
Jaeger
, “
Reservoir computing approaches to recurrent neural network training
,”
Comput. Sci. Rev.
3
,
127
149
(
2009
).
21.
R.
Gençay
and
T.
Liu
, “
Nonlinear modelling and prediction with feedforward and recurrent networks
,”
Physica D
108
,
119
134
(
1997
).
22.
P.
Erdos
, “
On random graphs
,”
Publ. Math.
6
,
290
297
(
1959
).
23.
A. E.
Hoerl
and
R. W.
Kennard
, “
Ridge regression: Biased estimation for nonorthogonal problems
,”
Technometrics
12
,
55
67
(
1970
).
24.
A.-L.
Barabási
and
E.
Bonabeau
, “
Scale-free networks
,”
Sci. Am.
288
,
60
69
(
2003
).
25.
L.
Amaral
,
A.
Scala
,
M.
Barthélémy
, and
H.
Stanley
, “
Classes of small-world networks
,”
Proc. Natl. Acad. Sci. U.S.A.
97
,
11149
11152
(
2000
).
26.
A.
Hagberg
,
P.
Swart
, and
D. S
Chult
, “Exploring network structure, dynamics, and function using NetworkX,” Technical Report, Los Alamos National Laboratory (LANL), Los Alamos, NM, 2008.
27.
B.
Bollobás
,
C.
Borgs
,
J.
Chayes
, and
O.
Riordan
, “Directed scale-free graphs,” in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, 2003), pp. 132–139.
28.
P.
Grassberger
and
I.
Procaccia
, “
Measuring the strangeness of strange attractors
,”
Physica D
9
,
189
208
(
1983
).
29.
P.
Grassberger
, “
Generalized dimensions of strange attractors
,”
Phys. Lett. A
97
,
227
230
(
1983
).
30.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
317
(
1985
).
31.
R.
Shaw
, “
Strange attractors, chaotic behavior, and information flow
,”
Z. Naturforsch. A
36
,
80
112
(
1981
).
32.
M. T.
Rosenstein
,
J. J.
Collins
, and
C. J.
De Luca
, “
A practical method for calculating largest Lyapunov exponents from small data sets
,”
Physica D
65
,
117
134
(
1993
).
33.
S. S.
Singh
,
B.
Khundrakpam
,
A. T.
Reid
,
J. D.
Lewis
,
A. C.
Evans
,
R.
Ishrat
,
B. I.
Sharma
, and
R. B.
Singh
, “
Scaling in topological properties of brain networks
,”
Sci. Rep.
6
,
24926
(
2016
).
34.
T. L.
Carroll
and
L. M.
Pecora
, “
Network structure effects in reservoir computers
,”
Chaos
29
,
083130
(
2019
).
You do not currently have access to this content.