The prediction of complex nonlinear dynamical systems with the help of machine learning techniques has become increasingly popular. In particular, reservoir computing turned out to be a very promising approach especially for the reproduction of the long-term properties of a nonlinear system. Yet, a thorough statistical analysis of the forecast results is missing. Using the Lorenz and Rössler system, we statistically analyze the quality of prediction for different parametrizations—both the exact short-term prediction as well as the reproduction of the long-term properties (the “climate”) of the system as estimated by the correlation dimension and largest Lyapunov exponent. We find that both short- and long-term predictions vary significantly among the realizations. Thus, special care must be taken in selecting the good predictions as realizations, which deliver better short-term prediction also tend to better resemble the long-term climate of the system. Instead of only using purely random Erdös-Renyi networks, we also investigate the benefit of alternative network topologies such as small world or scale-free networks and show which effect they have on the prediction quality. Our results suggest that the overall performance with respect to the reproduction of the climate of both the Lorenz and Rössler system is worst for scale-free networks. For the Lorenz system, there seems to be a slight benefit of using small world networks, while for the Rössler system, small world and Erdös-Renyi networks performed equivalently well. In general, the observation is that reservoir computing works for all network topologies investigated here.
Skip Nav Destination
Article navigation
October 2019
Research Article|
October 25 2019
Good and bad predictions: Assessing and improving the replication of chaotic attractors by means of reservoir computing
Alexander Haluszczynski
;
Alexander Haluszczynski
a)
1
Department of Physics, Ludwig-Maximilians-Universität
, Schellingstraße 4, 80799 Munich, Germany
2
risklab GmbH
, Seidlstraße 24, 80335 Munich, Germany
Search for other works by this author on:
Christoph Räth
Christoph Räth
b)
3
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Materialphysik im Weltraum
, Münchner Str. 20, 82234 Wessling, Germany
Search for other works by this author on:
a)
Electronic mail: alexander.haluszczynski@gmail.com
b)
Electronic mail: christoph.raeth@dlr.de
Note: This paper is part of the Focus Issue, “When Machine Learning Meets Complex Systems: Networks, Chaos and Nonlinear Dynamics.”
Chaos 29, 103143 (2019)
Article history
Received:
July 04 2019
Accepted:
October 09 2019
Citation
Alexander Haluszczynski, Christoph Räth; Good and bad predictions: Assessing and improving the replication of chaotic attractors by means of reservoir computing. Chaos 1 October 2019; 29 (10): 103143. https://doi.org/10.1063/1.5118725
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00