Integrable and nonintegrable discrete nonlinear Schrödinger equations (NLS) are significant models to describe many phenomena in physics. Recently, Ablowitz and Musslimani introduced a class of reverse space, reverse time, and reverse space-time nonlocal integrable equations, including the nonlocal NLS equation, nonlocal sine-Gordon equation, nonlocal Davey-Stewartson equation, etc. Moreover, the integrable nonlocal discrete NLS has been exactly solved by inverse scattering transform. In this paper, we study a nonintegrable discrete nonlocal NLS, which is a direct discrete version of the reverse space nonlocal NLS. By applying discrete Fourier transform and modified Neumann iteration, we present its stationary solutions numerically. The linear stability of the stationary solutions is examined. Finally, we study the Cauchy problem for the nonlocal NLS equation numerically and find some different and new properties on the numerical solutions comparing with the numerical solutions of the Cauchy problem for the NLS equation.

1.
C.
Sulem
and
P.-L.
Sulem
,
The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse
(
Springer Science & Business Media
,
2007
).
2.
K.
Rypdal
,
J. J.
Rasmussen
, and
K.
Thomsen
, “
Similarity structure of wave-collapse
,”
Physica D
16
,
339
357
(
1985
).
3.
J. J.
Rasmussen
and
K.
Rypdal
, “
Blow-up in nonlinear Schrödinger equations-I. A general review
,”
Phys. Scr.
33
,
481
497
(
1986
).
4.
K.
Rypdal
and
J. J.
Rasmussen
, “
Blow-up in nonlinear Schrödinger equations-II. Similarity structure of the blow-up singularity
,”
Phys. Scr.
33
,
498
504
(
1986
).
5.
M. J.
Ablowitz
and
G.
Biondini
, “
Multiscale pulse dynamics in communication systems with strong dispersion management
,”
Opt. Lett.
23
,
1668
1670
(
1998
).
6.
M. J.
Ablowitz
,
B.
Prinari
, and
A. D.
Trubatch
,
Discrete and Continuous Nonlinear Schrödinger Systems
(
Cambridge University Press
,
2004
).
7.
D. E.
Pelinovsky
, “
Translationally invariant nonlinear Schrödinger lattices
,”
Nonlinearity
19
,
2695
2716
(
2006
).
8.
J.
Yang
,
Nonlinear Waves in Integrable and Nonintegrable Systems
(
SIAM
,
Philadelphia
,
2010
).
9.
A.
Hasegawa
and
F.
Tappert
, “
Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion
,”
Appl. Phys. Lett.
23
,
142
144
(
1973
).
10.
A.
Hasegawa
and
F.
Tappert
, “
Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion
,”
Appl. Phys. Lett.
23
,
171
172
(
1973
).
11.
A. K.
Zvezdin
and
A. F.
Popkov
, “
Contribution to the nonlinear theory of magnetostatic spin waves
,”
Sov. Phys. JETP
57
,
350
355
(
1983
).
12.
D.
Peregrine
, “
Water waves, nonlinear Schrödinger equations and their solutions
,”
J. Austral. Math. Soc. Ser. B
25
,
16
43
(
1983
).
13.
D.
Benney
and
A.
Newell
, “
The propagation of nonlinear wave envelopes
,”
J. Math. Phys.
46
,
133
139
(
1967
).
14.
V. E.
Zakharov
, “
Stability of periodic waves of finite amplitude on the surface of a deep fluid
,”
J. Appl. Mech. Tech. Phys.
9
,
190
194
(
1968
).
15.
D.
Benney
and
G. J.
Roskes
, “
Wave instabilities
,”
Stud. Appl. Math.
48
,
377
385
(
1969
).
16.
V. E.
Zakharov
, “
Collapse of Langmuir waves
,”
Sov. Phys. JETP
35
,
908
914
(
1972
).
17.
V.
Zakharov
and
A.
Shabat
, “
Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media
,”
Sov. Phys. JETP
34
,
62
69
(
1972
).
18.
V.
Zakharov
and
A.
Shabat
, “
Interaction between solitons in a stable medium
,”
Sov. Phys. JETP
37
,
823
828
(
1973
).
19.
M. J.
Ablowitz
and
J. F.
Ladik
, “
Nonlinear differential-difference equations
,”
J. Math. Phys.
16
,
598
603
(
1975
).
20.
M. J.
Ablowitz
and
J. F.
Ladik
, “
Nonlinear differential-difference equations and Fourier analysis
,”
J. Math. Phys.
17
,
1011
1018
(
1976
).
21.
A. R.
Chowdhury
and
G.
Mahato
, “
A Darboux-Bäcklund transformation associated with a discrete nonlinear Schrödinger equation
,”
Lett. Math. Phys.
7
,
313
317
(
1983
).
22.
D.
Hennig
et al., “
Spatial properties of integrable and nonintegrable discrete nonlinear Schrödinger equations
,”
Phys. Rev. E
52
,
255
269
(
1995
).
23.
P. G.
Kevrekidis
,
K. Ø.
Rasmussen
, and
A. R.
Bishop
, “
The discrete nonlinear Schrödinger equation: A survey of recent results
,”
Int. J. Mod. Phys. B
15
,
2833
2900
(
2001
).
24.
B. M.
Herbst
and
M. J.
Ablowitz
, “
Numerically induced chaos in the nonlinear Schrödinger equation
,”
Phys. Rev. Lett.
62
,
2065
2068
(
1989
).
25.
G.
Kopidakis
,
S.
Aubry
, and
G.
Tsironis
, “
Targeted energy transfer through discrete breathers in nonlinear systems
,”
Phys. Rev. Lett.
87
,
165501
(
2001
).
26.
J. W.
Fleischer
et al., “
Observation of discrete solitons in optically induced real time waveguide arrays
,”
Phys. Rev. Lett.
90
,
023902
(
2003
).
27.
J. W.
Fleischer
et al., “
Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices
,”
Nature
422
,
147
150
(
2003
).
28.
Y. S.
Kivshar
and
G.
Agrawal
,
Optical Solitons: From Fibers to Photonic Crystals
(
Academic Press
,
2003
).
29.
M. J.
Ablowitz
,
Z. H.
Musslimani
, and
G.
Biondini
, “
Methods for discrete solitons in nonlinear lattices
,”
Phys. Rev. E
65
,
026602
(
2002
).
30.
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Integrable nonlocal nonlinear Schrödinger equation
,”
Phys. Rev. Lett.
110
,
064105
(
2013
).
31.
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Integrable nonlocal nonlinear equations
,”
Stud. Appl. Math.
139
,
7
59
(
2017
).
32.
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation
,”
Nonlinearity
29
,
915
946
(
2016
).
33.
M.
Li
and
T.
Xu
, “
Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential
,”
Phys. Rev. E
91
,
033202
(
2015
).
34.
M.
Li
,
T.
Xu
, and
D.
Meng
, “
Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model
,”
J. Phys. Soc. Jpn.
85
,
124001
(
2016
).
35.
X.-Y.
Wen
,
Z.
Yan
, and
Y.
Yang
, “
Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential
,”
Chaos
26
,
063123
(
2016
).
36.
S. K.
Gupta
and
A. K.
Sarma
, “
Peregrine rogue wave dynamics in the continuous nonlinear Schrödinger system with parity-time symmetric Kerr nonlinearity
,”
Commun. Nonlinear Sci. Numer. Simul.
36
,
141
147
(
2016
).
37.
L.
Ma
and
Z.
Zhu
, “
Nonlocal nonlinear Schrödinger equation and its discrete version: Soliton solutions and gauge equivalence
,”
J. Math. Phys.
57
,
083507
(
2016
).
38.
T. A.
Gadzhimuradov
and
A. M.
Agalarov
, “
Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation
,”
Phys. Rev. A
93
,
062124
(
2016
).
39.
A.
Fokas
, “
Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation
,”
Nonlinearity
29
,
319
324
(
2016
).
40.
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Integrable discrete PT symmetric model
,”
Phys. Rev. E
90
,
032912
(
2014
).
41.
L.
Ma
and
Z.
Zhu
, “
N-soliton solution for an integrable nonlocal discrete focusing nonlinear Schrödinger equation
,”
Appl. Math. Lett.
59
,
115
121
(
2016
).
42.
V.
Petviashvili
, “
Equation of an extraordinary soliton
,”
Sov. J. Plasma Phys.
2
,
469
472
(
1976
).
43.
X.
Huang
and
L. M.
Ling
, “
Soliton solutions for the nonlocal nonlinear Schrödinger equation
,”
Eur. Phys. J. Plus
131
,
148
(
2016
).
44.
J. C.
Eilbeck
,
P.
Lomdahl
, and
A.
Scott
, “
The discrete self-trapping equation
,”
Physica D
16
,
318
338
(
1985
).
45.
W. W. H.
Enright
,
T.
Hull
, and
K.
Jackson
,
User’s Guide for DVERK: A Subroutine for Solving Non-Stiff ODE’s
(
University of Toronto, Department of Computer Science
,
1976
).
You do not currently have access to this content.