We review two examples where the linear response of a neuronal network submitted to an external stimulus can be derived explicitly, including network parameters dependence. This is done in a statistical physicslike approach where one associates, to the spontaneous dynamics of the model, a natural notion of Gibbs distribution inherited from ergodic theory or stochastic processes. These two examples are the Amari-Wilson-Cowan model [S. Amari, Syst. Man Cybernet. SMC-2, 643–657 (1972); H. R. Wilson and J. D. Cowan, Biophys. J. 12, 1–24 (1972)] and a conductance based Integrate and Fire model [M. Rudolph and A. Destexhe, Neural Comput. 18, 2146–2210 (2006); M. Rudolph and A. Destexhe, Neurocomputing 70(10–12), 1966–1969 (2007)].

1.
R. V.
Abramov
and
A. J.
Majda
, “
New approximations and tests of linear fluctuation-response for chaotic non-linear forced-dissipative dynamical systems
,”
J. Nonlinear Sci.
18
(
3
),
303
341
(
2008
).
2.
K.
Aihara
,
T.
Takabe
, and
M.
Toyoda
, “
Chaotic neural networks
,”
Phys. Lett. A
144
(
6
),
333
340
(
1990
).
3.
S.
Amari
, “
Characteristics of random nets of analog neuron-like elements
,”
Syst. Man Cybernet.
SMC-2
,
643
657
(
1972
).
4.
V. I.
Arnold
,
Geometrical Methods in the Theory of Ordinary Differential Equations
(
Springer-Verlag Inc.
,
New York
,
1983
).
5.
M.
Baiesi
and
C.
Maes
, “
An update on the nonequilibrium linear response
,”
New J. Phys.
15
(
1
),
013004
(
2013
).
6.
V.
Baladi
, “
On the susceptibility function of piecewise expanding interval maps
,”
Commun. Math. Phys.
275
(
3
),
839
859
(
2007
).
7.
V.
Baladi
,
M.
Benedicks
, and
D.
Schnellmann
, “Linear response, or else,” in ICM Seoul 2014 Talk, August 2014 (2014).
8.
U.
Basu
and
C.
Maes
, “
Nonequilibrium response and Frenesy
,”
J. Phys. Conf. Ser.
638
,
012001
(
2015
).
9.
D.
Battaglia
,
I.
Guyon
,
V.
Lemaire
,
J.
Orlandi
,
B.
Ray
, and
J.
Soriano
,
Neural Connectomics Challenge
(
Springer
,
2017
).
10.
N.
Bertschinger
and
T.
Natschläger
, “
Real-time computation at the edge of chaos in recurrent neural networks
,”
Neural Comput.
16
(
7
),
1413
1436
(
2004
).
11.
R.
Bowen
, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics Vol. 470 (Springer-Verlag, New York, 1975).
12.
R.
Bowen
and
D.
Ruelle
, “
The ergodic theory of axiom A flows
,”
Inven. Math.
29
,
181
202
(
1975
).
13.
P.
Bressloff
, Waves in Neural Media, in Lecture Notes on Mathematical Modelling in the Applied Sciences (Springer, 2014).
14.
R.
Brette
and
W.
Gerstner
, “
Adaptive exponential integrate-and-fire model as an effective description of neuronal activity
,”
J. Neurophysiol.
94
,
3637
3642
(
2005
).
15.
J.
Cabral
,
M. L.
Kringelbach
, and
G.
Deco
, “
Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms
,”
NeuroImage
160
,
84
96
(
2017
).
16.
B.
Cessac
, “
Increase in complexity in random neural networks
,”
J. Phys. I (France)
5
,
409
432
(
1995
).
17.
B.
Cessac
, “
Does the complex susceptibility of the Hénon map have a pole in the upper-half plane? A numerical investigation
,”
Nonlinearity
20
,
2883
2895
(
2007
).
18.
B.
Cessac
and
J. A.
Sepulchre
, “
Stable resonances and signal propagation in a chaotic network of coupled units
,”
Phys. Rev. E
70
,
056111
(
2004
).
19.
B.
Cessac
and
J. A.
Sepulchre
, “
Transmitting a signal by amplitude modulation in a chaotic network
,”
Chaos
16
,
013104
(
2006
).
20.
B.
Cessac
and
J. A.
Sepulchre
, “
Linear response in a class of simple systems far from equilibrium
,”
Physica D
225
(
1
),
13
28
(
2007
).
21.
B.
Cessac
, “
Absolute stability criteria for random asymmetric neural networks
,”
J. Phys. A
27
,
L927
L930
(
1994
).
22.
B.
Cessac
, “
Statistics of spike trains in conductance-based neural networks: Rigorous results
,”
J. Math. Neurosci.
1
(
8
),
1
42
(
2011
).
23.
B.
Cessac
and
R.
Cofré
, “
Spike train statistics and Gibbs distributions
,”
J. Physiol. Paris
107
(
5
),
360
368
(
2013
).
24.
B.
Cessac
and
R.
Cofré
, “Linear response for spiking neuronal networks with unbounded memory,” e-print arXiv:1905.13424 (submitted).
25.
B.
Cessac
,
B.
Doyon
,
M.
Quoy
, and
M.
Samuelides
, “
Mean-field equations, bifurcation map, and route to chaos in discrete time neural networks
,”
Physica D
74
,
24
44
(
1994
).
26.
E. J.
Chichilnisky
, “
A simple white noise analysis of neuronal light responses
,”
Netw. Comput. Neural Syst.
12
,
199
213
(
2001
).
27.
S.
Cocco
,
S.
Leibler
, and
R.
Monasson
, “
Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods
,”
Proc. Natl. Acad. Sci. U.S.A.
106
(
33
),
14058
14062
(
2009
).
28.
R.
Cofré
and
B.
Cessac
, “
Dynamics and spike trains statistics in conductance-based integrate-and-fire neural networks with chemical and electric synapses
,”
Chaos Solitons Fractals
50
(
13
),
3
(
2013
).
29.
R.
Cofré
and
B.
Cessac
, “
Exact computation of the maximum-entropy potential of spiking neural-network models
,”
Phys. Rev. E
89
,
052117
(
2014
).
30.
P.
Dayan
and
L. F.
Abbott
,
Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems
(
MIT Press
,
2001
).
31.
S. R.
de Groot
and
P.
Mazur
,
Non-equilibrium Thermodynamics (Dover Books on Physics)
(
Dover Publications
,
1984
).
32.
A.
Dembo
and
O.
Zeitouni
,
Large Deviations Techniques and Applications
(
Springer
,
1998
), Vol. 38.
33.
A.
Destexhe
,
Z. F.
Mainen
, and
T. J.
Sejnowski
, “
Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism
,”
J. Comput. Neurosci.
1
(
3
),
195
230
(
1994
).
34.
B.
Doyon
,
B.
Cessac
,
M.
Quoy
, and
M.
Samuelides
, “
Control of the transition to chaos in neural networks with random connectivity
,”
Int. J. Bifurcat. Chaos
03
(
02
),
279
291
(
1993
).
35.
B.
Ermentrout
, “
Neural networks as spatio-temporal pattern-forming systems
,”
Rep. Prog. Phys.
61
,
353
430
(
1998
).
36.
B.
Ermentrout
and
D.
Terman
, Foundations of Mathematical Neuroscience, Interdisciplinary Applied Mathematics (Springer, 2010).
37.
O.
Faugeras
and
J.
MacLaurin
, “
Asymptotic description of neural networks with correlated synaptic weights
,”
Entropy
17
(
7
),
4701
(
2015
).
38.
O.
Faugeras
,
J.
Touboul
, and
B.
Cessac
, “
A constructive mean field analysis of multi population neural networks with random synaptic weights and stochastic inputs
,”
Front. Comput. Neurosci.
3
,
1
(
2009
).
39.
R.
Fernandez
and
S.
Gallo
, “
Regular g-measures are not always Gibbsian
,”
Electron. Commun. Probab.
16
,
732
740
(
2011
).
40.
R.
Fernandez
and
G.
Maillard
, “
Chains with complete connections: General theory, uniqueness, loss of memory and mixing properties
,”
J. Stat. Phys.
118
(
3–4
),
555
588
(
2005
).
41.
U.
Ferrari
,
S.
Deny
,
M.
Chalk
,
G.
Tkačik
,
O.
Marre
, and
T.
Mora
, “
Separating intrinsic interactions from extrinsic correlations in a network of sensory neurons
,”
Phys. Rev. E
98
(
4
),
042410
(
2018
).
42.
R.
FitzHugh
, “
Mathematical models of threshold phenomena in the nerve membrane
,”
Bull. Math. Biol.
17
(
4
),
257
278
(
1955
).
43.
W. J.
Freeman
,
Y.
Yao
, and
B.
Burke
, “
Central pattern generating and recognizing in olfactory bulb: A correlation learning rule
,”
Neural Netw.
1
(
4
),
277
288
(
1988
).
44.
K.
Friston
,
J.
Kilner
, and
L.
Harrison
, “
A free energy principle for the brain
,”
J. Physiol. Paris
100
,
70
87
(
2006
).
45.
K.
Friston
, “
The free-energy principle: A rough guide to the brain?
,”
Trends Cogn. Sci.
13
(
7
),
293
301
(
2009
).
46.
K.
Friston
, “
The free-energy principle: A unified brain theory?
,”
Nat. Rev. Neurosci.
11
(
2
),
127
138
(
2010
).
47.
K.
Friston
, “
Functional and effective connectivity: A review
,”
Brain Connect.
1
(
1
),
13
36
(
2011
).
48.
G.
Gallavotti
and
E. G. D.
Cohen
, “
Dynamical ensembles in stationary states
,”
J. Stat. Phys.
80
(
5
),
931
970
(
1995
).
49.
G.
Gallavotti
and
E. G. D.
Cohen
, “
Dynamical ensembles in nonequilibrium statistical mechanics
,”
Phys. Rev. Lett.
74
,
2694
2697
(
1995
).
50.
G.
Gallavotti
, “
Chaotic hypothesis: Onsager reciprocity and fluctuation-dissipation theorem
,”
J. Stat. Phys.
84
(
5
),
899
925
(
1996
).
51.
G.
Gallavotti
,
Nonequilibrium and Irreversibility
(
Springer
,
2014
).
52.
J. M.
Gambaudo
and
C.
Tresser
,
Le chaos, théorie et expériences
(
Collection CEA
,
1988
).
53.
E.
Ganmor
,
R.
Segev
, and
E.
Schneidman
, “
The architecture of functional interaction networks in the retina
,”
J. Neurosci.
31
(
8
),
3044
3054
(
2011
).
54.
E.
Ganmor
,
R.
Segev
, and
E.
Schneidman
, “
Sparse low-order interaction network underlies a highly correlated and learnable neural population code
,”
Proc. Natl. Acad. Sci. U.S.A.
108
(
23
),
9679
9684
(
2011
).
55.
F. R.
Gantmacher
,
The Theory of Matrices
(
Chelsea Publishing Company
,
1959
).
56.
C.
Gardella
,
O.
Marre
, and
T.
Mora
, “
Modeling the correlated activity of neural populations: A review
,”
Neural Comput.
31
(
2
),
233
269
(
2019
).
57.
P.
Gaspard
, Chaos, Scattering and Statistical Mechanics, Cambridge Nonlinear Science Series (Cambridge University Press, 2005).
58.
W.
Gerstner
and
W. M.
Kistler
,
Spiking Neuron Models
(
Cambridge University Press
,
2002
).
59.
V. L.
Girko
, “
Circular law
,”
Theor. Prob. Appl.
29
,
694
706
(
1984
).
60.
V. L.
Girko
, Theory of Random Determinants, Mathematics and its Applications (Springer, Netherlands, 2012).
61.
T.
Gollisch
and
M.
Meister
, “
Eye smarter than scientists believed: Neural computations in circuits of the retina
,”
Neuron
65
(
2
),
150
164
(
2010
).
62.
M. S.
Green
, “
Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids
,”
J. Chem. Phys.
22
(
3
),
398
413
(
1954
).
63.
J. M.
Hammersley
and
P.
Clifford
, “Markov fields on finite graphs and lattices” (unpublished).
64.
A. L.
Hodgkin
and
A. F.
Huxley
, “
A quantitative description of membrane current and its application to conduction and excitation in nerve
,”
J. Physiol.
117
,
500
544
(
1952
).
65.
D. H.
Hubel
and
T. N.
Wiesel
, “
Receptive fields, binocular interaction and functional architecture in the cat visual cortex
,”
J. Physiol.
160
,
106
154
(
1962
).
66.
E.
Izhikevich
, “
Simple model of spiking neurons
,”
IEEE Trans. Neural Netw.
14
(
6
),
1569
1572
(
2003
).
67.
E.
Izhikevich
, “
Neural excitability, spiking, and bursting
,”
Int. J. Bifurcat. Chaos
10
,
1171
1266
(
2000
).
68.
E. T.
Jaynes
, “
Information theory and statistical mechanics
,”
Phys. Rev.
106
,
620
(
1957
).
69.
Y.
Jiang
and
D.
Ruelle
, “
Analyticity of the susceptibility function for unimodal Markovian maps of the interval
,”
Nonlinearity
18
,
2447
(
2005
).
70.
M.
Kaiser
,
R. L.
Jack
, and
J.
Zimmer
, “
Canonical structure and orthogonality of forces and currents in irreversible Markov chains
,”
J. Stat. Phys.
170
(
6
),
1019
1050
(
2018
).
71.
J. L.
Kaplan
and
J. A.
Yorke
, “Chaotic behavior of multidimensional difference equations,” in Functional Differential Equations and Approximation of Fixed Points, edited by H.-O. Peitgen and H.-O. Walther (Springer, Berlin, 1979), pp. 204–227.
72.
A.
Katok
and
B.
Hasselblatt
,
Introduction to the Modern Theory of Dynamical Systems
(
Kluwer
,
1998
).
73.
J. S.
Kirkaldy
, “
Thermodynamics of the human brain
,”
Biophys. J.
5
(
6
),
981
986
(
1965
).
74.
H.
Korn
and
P.
Faure
, “
Is there chaos in the brain? II. Experimental evidence and related models
,”
C. R. Biologies
326
,
787
840
(
2003
).
75.
R.
Kubo
, “
Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems
,”
J. Phys. Soc. Jpn.
12
(
6
),
570
586
(
1957
).
76.
L.
Lapicque
, “
Recherches quantitatives sur l’excitation des nerfs traitée comme une polarisation
,”
J. Physiol. Paris
9
,
620
635
(
1907
).
77.
M.
Le Bellac
,
F.
Mortessagne
, and
G. G.
Batrouni
,
Equilibrium and Non-Equilibrium Statistical Thermodynamics
(
Cambridge University Press
,
2004
).
78.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
79.
R. S.
Mackay
and
C.
Tresser
, “
Transition to topological chaos for circle maps
,”
Physica D
19
(
2
),
206
273
(
1986
).
80.
C.
Maes
and
M. H.
van Wieren
, “
Time-symmetric fluctuations in nonequilibrium systems
,”
Phys. Rev. Lett.
96
,
240601
(
2006
).
81.
G.
Maillard
, Introduction to Chains with Complete Connections (Ecole Federale Polytechnique de Lausanne, 2007).
82.
K.
Matsuoka
, “
Stability conditions for nonlinear continuous neural networks with asymmetric connection weights
,”
Neural Netw.
5
,
495
500
(
1992
).
83.
C.
Morris
and
H.
Lecar
, “
Voltage oscillations in the barnacle giant muscle fiber
,”
Biophys. J.
35
(
1
),
193
213
(
1981
).
84.
S. P.
Muscinelli
,
W.
Gerstner
, and
T.
Schwalger
, “How single neuron properties shape chaotic dynamics and signal transmission in random neural networks,” e-print arXiv (2018).
85.
J.
Nagumo
,
S.
Arimoto
, and
S.
Yoshizawa
, “
An active pulse transmission line simulating nerve axon
,”
Proc. IRE
50
,
2061
2070
(
1962
).
86.
J.
Naudé
,
B.
Cessac
,
H.
Berry
, and
B.
Delord
, “
Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks
,”
J. Neurosci.
33
,
15032
(
2013
).
87.
S.
Newhouse
,
D.
Ruelle
, and
F.
Takens
, “
Occurrence of strange axiom a attractors near quasiperiodic flows on tm, m3
,”
Commun. Math. Phys.
64
(
1
),
35
40
(
1978
).
88.
MEA records actually a voltage activity on recording electrodes. Then, a spike sorting algorithm is used to attribute recorded voltage traces to neurons, and then, construct the spike train. Therefore, MEA could in principle allow to obtain the probability of having a spike pattern given the voltage history.
89.
A.
Le Ny
, “
Introduction to (generalized) Gibbs measures
,”
Ensaios Matematicos
15
,
1
126
(
2008
).
90.
O.
Onicescu
and
G.
Mihoc
, “
Sur les chaînes statistiques
,”
C. R. Acad. Sci. Paris
200
,
511
512
(
1935
).
91.
L.
Onsager
, “
Reciprocal relations in irreversible processes. I
,”
Phys. Rev.
37
,
405
426
(
1931
).
92.
S.
Ostojic
and
N.
Brunel
, “
From spiking neuron models to linear-nonlinear models
,”
PLoS Comput. Biol.
7
(
1
),
1
16
(
2011
).
93.
W.
Parry
and
M.
Pollicott
, “
Zeta functions and the periodic orbit structure of hyperbolic dynamics
,”
Astérisque
187
(
188
),
1
268
(
1990
).
94.
Y. B.
Pesin
, “
Characteristic Lyapunov exponents and smooth ergodic theory
,”
Usp. Mat. Nauk
32
(
4
),
55
112
(
1977
).
95.
J. W.
Pillow
,
L.
Paninski
,
V. J.
Uzzell
,
E. P.
Simoncelli
, and
E. J.
Chichilnisky
, “
Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model
,”
J. Neurosci.
25
(
47
),
11003
11013
(
2005
).
96.
M.
Pollicott
, “
On the rate of mixing of axiom a flows
,”
Invent. Math.
81
(
3
),
413
426
(
1985
).
97.
H.
Preissl
,
W.
Lutzenberger
, and
F.
Pulvermüller
, “
Is there chaos in the brain?
,”
Behav. Brain Sci.
19
(
2
),
307
308
(
1996
).
98.
P.
Reynaud-Bouret
,
V.
Rivoirard
,
F.
Grammont
, and
C.
Tuleau-Malot
, “
Goodness-of-fit tests and nonparametric adaptive estimation for spike train analysis
,”
J. Math. Neurosci.
4
,
3
(
2014
).
99.
P.
Reynaud-Bouret
,
V.
Rivoirard
, and
C.
Tuleau-Malot
, “Inference of functional connectivity in Neurosciences via Hawkes processes,” in 1st IEEE Global Conference on Signal and Information Processing, Austin, TX, USA (2013).
100.
F.
Rieke
,
D.
Warland
,
R.
de Ruyter van Steveninck
, and
W.
Bialek
,
Spikes: Exploring the Neural Code
(
Bradford Books
,
1997
).
101.
M.
Rudolph
and
A.
Destexhe
, “
Analytical integrate and fire neuron models with conductance-based dynamics for event driven simulation strategies
,”
Neural Comput.
18
,
2146
2210
(
2006
).
102.
M.
Rudolph
and
A.
Destexhe
, “
How much can we trust neural simulation strategies?
,”
Neurocomputing
70
(
10–12
),
1966
1969
(
2007
).
103.
D.
Ruelle
, “
Generalized zeta-functions for axiom A basic sets
,”
Bull. Amer. Math. Soc.
82
,
153
156
(
1976
).
104.
D.
Ruelle
,
Thermodynamic Formalism
(
Addison-Wesley
,
Reading, MA
,
1978
).
105.
D.
Ruelle
, “
Resonances for axiom A flows
,”
J. Differential Geom.
25
(
1
),
99
116
(
1987
).
106.
D.
Ruelle
, “
Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics
,”
J. Stat. Phys.
95
,
393
468
(
1999
).
107.
D.
Ruelle
, “
A measure associated with axiom A attractors
,”
Am. J. Math.
98
(
3
),
619
654
(
1976
).
108.
D.
Ruelle
, “
Nonequilibrium statistical mechanics near equilibrium: Computing higher-order terms
,”
Nonlinearity
11
(
1
),
5
18
(
1998
).
109.
D.
Ruelle
, “
Differentiating the absolutely continuous invariant measure of an interval map f with respect to f
,”
Commun. Math. Phys.
258
,
445
453
(
2005
).
110.
D.
Ruelle
and
F.
Takens
, “
On the nature of turbulence
,”
Commun. Math. Phys.
20
,
167
192
(
1971
).
111.
E.
Schneidman
,
M. J.
Berry
,
R.
Segev
, and
W.
Bialek
, “
Weak pairwise correlations imply strongly correlated network states in a neural population
,”
Nature
440
(
7087
),
1007
1012
(
2006
).
112.
J.
Schuecker
,
S.
Goedeke
,
D.
Dahmen
, and
M.
Helias
, “Functional methods for disordered neural networks,” e-print arXiv (2016).
113.
E.
Seneta
,
Non-negative Matrices and Markov Chains
(
Springer
,
2006
).
114.
J.
Shlens
,
G. D.
Field
,
J. L.
Gauthier
,
M. I.
Grivich
,
D.
Petrusca
,
A.
Sher
,
A. M.
Litke
, and
E. J.
Chichilnisky
, “
The structure of multi-neuron firing patterns in primate retina
,”
J. Neurosci.
26
(
32
),
8254
(
2006
).
115.
J.
Shlens
,
G. D.
Field
,
J. L.
Gauthier
,
M.
Greschner
,
A.
Sher
,
A. M.
Litke
, and
E. J.
Chichilnisky
, “
The structure of large-scale synchronized firing in primate retina
,”
J. Neurosci.
29
(
15
),
5022
5031
(
2009
).
116.
E. P.
Simoncelli
,
L.
Paninski
,
J.
Pillow
, and
O.
Schwartz
, “Characterization of neural responses with stochastic stimuli,” in The Cognitive Neurosciences, III, edited by M. Gazzaniga (MIT Press, 2004), Chap. 23, pp. 327–338.
117.
Y.
Sinai
, “
Gibbs measures in ergodic theory
,”
Russ. Math. Surveys
27
(
4
),
21
69
(
1972
).
118.
B.
Siri
,
H.
Berry
,
B.
Cessac
,
B.
Delord
, and
M.
Quoy
, “
Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons
,”
J. Physiol. Paris
101
,
136
(
2007
).
119.
B.
Siri
,
H.
Berry
,
B.
Cessac
,
B.
Delord
, and
M.
Quoy
, “
A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks
,”
Neural Comput.
20
(
12
),
12
(
2008
).
120.
H.
Sompolinsky
,
A.
Crisanti
, and
H. J.
Sommers
, “
Chaos in random neural networks
,”
Phys. Rev. Lett.
61
(
3
),
259
262
(
1988
).
121.
H.
Sompolinsky
and
A.
Zippelius
, “
Dynamic theory of the spin-glass phase
,”
Phys. Rev. Lett.
47
(
5
),
359
362
(
1981
).
122.
H.
Sompolinsky
and
A.
Zippelius
, “
Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses
,”
Phys. Rev. B
25
(
11
),
6860
6875
(
1982
).
123.
S.
Souihel
and
B.
Cessac
, “Anticipation in the retina and the primary visual cortex: Towards an integrated retino-cortical model for motion processing,” in ICMNS 2019—The 5th International Conference on Mathematical NeuroScience, Copenhague, Denmark (2019).
124.
G.
Tkacik
,
T.
Mora
,
O.
Marre
,
D.
Amodei
,
S. E.
Palmer
,
M. J.
Berry
, and
W.
Bialek
, “
Thermodynamics and signatures of criticality in a network of neurons
,”
Proc. Natl. Acad. Sci. U.S.A.
112
(
37
),
11508
11513
(
2015
).
125.
G.
Tkačik
,
E.
Schneidman
,
M. J.
Berry
, and
W.
Bialek
, “Spin glass models for a network of real neurons,” e-print arXiv:0912.5409 (2009).
126.
T. K.
Tran
, “Large scale retinal modeling for the design of new generation retinal prostheses,” Ph.D. thesis (University of Nottingham, 2015).
127.
N. G.
van Kampen
, “
A discussion on linear response theory
,”
Phys. Norv.
5
,
279
(
1971
).
128.
C.
VanVreeswijk
and
H.
Sompolinsky
, “
Chaotic balanced state in a model of cortical circuits
,”
Neural Comput.
10
,
1321
1372
(
1998
).
129.
J. C.
Vasquez
,
O.
Marre
,
A.
Palacios
,
M. J.
Berry
, and
B.
Cessac
, “
Gibbs distribution analysis of temporal correlation structure on multicell spike trains from retina ganglion cells
,”
J. Physiol. Paris
106
(
3–4
),
120
127
(
2012
).
130.
J. C.
Vasquez
,
B.
Cessac
,
H.
Rostro-Gonzalez
, and
T.
Viéville
, “
How Gibbs distributions may naturally arise from synaptic adaptation mechanisms. A model-based argumentation
,”
J. Stat. Phys.
136
(
3
),
565
602
(
2009
).
131.
H. R.
Wilson
and
J. D.
Cowan
, “
Excitatory and inhibitory interactions in localized populations of model neurons
,”
Biophys. J.
12
,
1
24
(
1972
).
132.
H. R.
Wilson
and
J. D.
Cowan
, “
A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue
,”
Biol. Cybern.
13
(
2
),
55
80
(
1973
).
133.
C. N.
Yang
and
T. D.
Lee
, “
Statistical theory of equations of state and phase transitions. I. Theory of condensation
,”
Phys. Rev.
87
,
404
409
(
1952
).
You do not currently have access to this content.