We review two examples where the linear response of a neuronal network submitted to an external stimulus can be derived explicitly, including network parameters dependence. This is done in a statistical physicslike approach where one associates, to the spontaneous dynamics of the model, a natural notion of Gibbs distribution inherited from ergodic theory or stochastic processes. These two examples are the Amari-Wilson-Cowan model [S. Amari, Syst. Man Cybernet. SMC-2, 643–657 (1972); H. R. Wilson and J. D. Cowan, Biophys. J. 12, 1–24 (1972)] and a conductance based Integrate and Fire model [M. Rudolph and A. Destexhe, Neural Comput. 18, 2146–2210 (2006); M. Rudolph and A. Destexhe, Neurocomputing 70(10–12), 1966–1969 (2007)].
REFERENCES
1.
R. V.
Abramov
and A. J.
Majda
, “New approximations and tests of linear fluctuation-response for chaotic non-linear forced-dissipative dynamical systems
,” J. Nonlinear Sci.
18
(3
), 303
–341
(2008
). 2.
K.
Aihara
, T.
Takabe
, and M.
Toyoda
, “Chaotic neural networks
,” Phys. Lett. A
144
(6
), 333
–340
(1990
). 3.
S.
Amari
, “Characteristics of random nets of analog neuron-like elements
,” Syst. Man Cybernet.
SMC-2
, 643
–657
(1972
). 4.
V. I.
Arnold
, Geometrical Methods in the Theory of Ordinary Differential Equations
(Springer-Verlag Inc.
, New York
, 1983
).5.
M.
Baiesi
and C.
Maes
, “An update on the nonequilibrium linear response
,” New J. Phys.
15
(1
), 013004
(2013
). 6.
V.
Baladi
, “On the susceptibility function of piecewise expanding interval maps
,” Commun. Math. Phys.
275
(3
), 839
–859
(2007
). 7.
V.
Baladi
, M.
Benedicks
, and D.
Schnellmann
, “Linear response, or else,” in ICM Seoul 2014 Talk, August 2014 (2014).8.
U.
Basu
and C.
Maes
, “Nonequilibrium response and Frenesy
,” J. Phys. Conf. Ser.
638
, 012001
(2015
). 9.
D.
Battaglia
, I.
Guyon
, V.
Lemaire
, J.
Orlandi
, B.
Ray
, and J.
Soriano
, Neural Connectomics Challenge
(Springer
, 2017
).10.
N.
Bertschinger
and T.
Natschläger
, “Real-time computation at the edge of chaos in recurrent neural networks
,” Neural Comput.
16
(7
), 1413
–1436
(2004
). 11.
R.
Bowen
, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics Vol. 470 (Springer-Verlag, New York, 1975).12.
R.
Bowen
and D.
Ruelle
, “The ergodic theory of axiom A flows
,” Inven. Math.
29
, 181
–202
(1975
). 13.
P.
Bressloff
, Waves in Neural Media, in Lecture Notes on Mathematical Modelling in the Applied Sciences (Springer, 2014).14.
R.
Brette
and W.
Gerstner
, “Adaptive exponential integrate-and-fire model as an effective description of neuronal activity
,” J. Neurophysiol.
94
, 3637
–3642
(2005
). 15.
J.
Cabral
, M. L.
Kringelbach
, and G.
Deco
, “Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms
,” NeuroImage
160
, 84
–96
(2017
). 16.
B.
Cessac
, “Increase in complexity in random neural networks
,” J. Phys. I (France)
5
, 409
–432
(1995
). 17.
B.
Cessac
, “Does the complex susceptibility of the Hénon map have a pole in the upper-half plane? A numerical investigation
,” Nonlinearity
20
, 2883
–2895
(2007
). 18.
B.
Cessac
and J. A.
Sepulchre
, “Stable resonances and signal propagation in a chaotic network of coupled units
,” Phys. Rev. E
70
, 056111
(2004
). 19.
B.
Cessac
and J. A.
Sepulchre
, “Transmitting a signal by amplitude modulation in a chaotic network
,” Chaos
16
, 013104
(2006
). 20.
B.
Cessac
and J. A.
Sepulchre
, “Linear response in a class of simple systems far from equilibrium
,” Physica D
225
(1
), 13
–28
(2007
). 21.
B.
Cessac
, “Absolute stability criteria for random asymmetric neural networks
,” J. Phys. A
27
, L927
–L930
(1994
). 22.
B.
Cessac
, “Statistics of spike trains in conductance-based neural networks: Rigorous results
,” J. Math. Neurosci.
1
(8
), 1
–42
(2011
). 23.
B.
Cessac
and R.
Cofré
, “Spike train statistics and Gibbs distributions
,” J. Physiol. Paris
107
(5
), 360
–368
(2013
). 24.
B.
Cessac
and R.
Cofré
, “Linear response for spiking neuronal networks with unbounded memory,” e-print arXiv:1905.13424 (submitted).25.
B.
Cessac
, B.
Doyon
, M.
Quoy
, and M.
Samuelides
, “Mean-field equations, bifurcation map, and route to chaos in discrete time neural networks
,” Physica D
74
, 24
–44
(1994
). 26.
E. J.
Chichilnisky
, “A simple white noise analysis of neuronal light responses
,” Netw. Comput. Neural Syst.
12
, 199
–213
(2001
). 27.
S.
Cocco
, S.
Leibler
, and R.
Monasson
, “Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods
,” Proc. Natl. Acad. Sci. U.S.A.
106
(33
), 14058
–14062
(2009
). 28.
R.
Cofré
and B.
Cessac
, “Dynamics and spike trains statistics in conductance-based integrate-and-fire neural networks with chemical and electric synapses
,” Chaos Solitons Fractals
50
(13
), 3
(2013
). 29.
R.
Cofré
and B.
Cessac
, “Exact computation of the maximum-entropy potential of spiking neural-network models
,” Phys. Rev. E
89
, 052117
(2014
). 30.
P.
Dayan
and L. F.
Abbott
, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems
(MIT Press
, 2001
).31.
S. R.
de Groot
and P.
Mazur
, Non-equilibrium Thermodynamics (Dover Books on Physics)
(Dover Publications
, 1984
).32.
A.
Dembo
and O.
Zeitouni
, Large Deviations Techniques and Applications
(Springer
, 1998
), Vol. 38.33.
A.
Destexhe
, Z. F.
Mainen
, and T. J.
Sejnowski
, “Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism
,” J. Comput. Neurosci.
1
(3
), 195
–230
(1994
). 34.
B.
Doyon
, B.
Cessac
, M.
Quoy
, and M.
Samuelides
, “Control of the transition to chaos in neural networks with random connectivity
,” Int. J. Bifurcat. Chaos
03
(02
), 279
–291
(1993
). 35.
B.
Ermentrout
, “Neural networks as spatio-temporal pattern-forming systems
,” Rep. Prog. Phys.
61
, 353
–430
(1998
). 36.
B.
Ermentrout
and D.
Terman
, Foundations of Mathematical Neuroscience, Interdisciplinary Applied Mathematics (Springer, 2010).37.
O.
Faugeras
and J.
MacLaurin
, “Asymptotic description of neural networks with correlated synaptic weights
,” Entropy
17
(7
), 4701
(2015
). 38.
O.
Faugeras
, J.
Touboul
, and B.
Cessac
, “A constructive mean field analysis of multi population neural networks with random synaptic weights and stochastic inputs
,” Front. Comput. Neurosci.
3
, 1
(2009
). 39.
R.
Fernandez
and S.
Gallo
, “Regular g-measures are not always Gibbsian
,” Electron. Commun. Probab.
16
, 732
–740
(2011
). 40.
R.
Fernandez
and G.
Maillard
, “Chains with complete connections: General theory, uniqueness, loss of memory and mixing properties
,” J. Stat. Phys.
118
(3–4
), 555
–588
(2005
). 41.
U.
Ferrari
, S.
Deny
, M.
Chalk
, G.
Tkačik
, O.
Marre
, and T.
Mora
, “Separating intrinsic interactions from extrinsic correlations in a network of sensory neurons
,” Phys. Rev. E
98
(4
), 042410
(2018
). 42.
R.
FitzHugh
, “Mathematical models of threshold phenomena in the nerve membrane
,” Bull. Math. Biol.
17
(4
), 257
–278
(1955
). 43.
W. J.
Freeman
, Y.
Yao
, and B.
Burke
, “Central pattern generating and recognizing in olfactory bulb: A correlation learning rule
,” Neural Netw.
1
(4
), 277
–288
(1988
). 44.
K.
Friston
, J.
Kilner
, and L.
Harrison
, “A free energy principle for the brain
,” J. Physiol. Paris
100
, 70
–87
(2006
). 45.
K.
Friston
, “The free-energy principle: A rough guide to the brain?
,” Trends Cogn. Sci.
13
(7
), 293
–301
(2009
). 46.
K.
Friston
, “The free-energy principle: A unified brain theory?
,” Nat. Rev. Neurosci.
11
(2
), 127
–138
(2010
). 47.
K.
Friston
, “Functional and effective connectivity: A review
,” Brain Connect.
1
(1
), 13
–36
(2011
). 48.
G.
Gallavotti
and E. G. D.
Cohen
, “Dynamical ensembles in stationary states
,” J. Stat. Phys.
80
(5
), 931
–970
(1995
). 49.
G.
Gallavotti
and E. G. D.
Cohen
, “Dynamical ensembles in nonequilibrium statistical mechanics
,” Phys. Rev. Lett.
74
, 2694
–2697
(1995
). 50.
G.
Gallavotti
, “Chaotic hypothesis: Onsager reciprocity and fluctuation-dissipation theorem
,” J. Stat. Phys.
84
(5
), 899
–925
(1996
). 51.
52.
J. M.
Gambaudo
and C.
Tresser
, Le chaos, théorie et expériences
(Collection CEA
, 1988
).53.
E.
Ganmor
, R.
Segev
, and E.
Schneidman
, “The architecture of functional interaction networks in the retina
,” J. Neurosci.
31
(8
), 3044
–3054
(2011
). 54.
E.
Ganmor
, R.
Segev
, and E.
Schneidman
, “Sparse low-order interaction network underlies a highly correlated and learnable neural population code
,” Proc. Natl. Acad. Sci. U.S.A.
108
(23
), 9679
–9684
(2011
). 55.
56.
C.
Gardella
, O.
Marre
, and T.
Mora
, “Modeling the correlated activity of neural populations: A review
,” Neural Comput.
31
(2
), 233
–269
(2019
). 57.
P.
Gaspard
, Chaos, Scattering and Statistical Mechanics, Cambridge Nonlinear Science Series (Cambridge University Press, 2005).58.
W.
Gerstner
and W. M.
Kistler
, Spiking Neuron Models
(Cambridge University Press
, 2002
).59.
V. L.
Girko
, “Circular law
,” Theor. Prob. Appl.
29
, 694
–706
(1984
). 60.
V. L.
Girko
, Theory of Random Determinants, Mathematics and its Applications (Springer, Netherlands, 2012).61.
T.
Gollisch
and M.
Meister
, “Eye smarter than scientists believed: Neural computations in circuits of the retina
,” Neuron
65
(2
), 150
–164
(2010
). 62.
M. S.
Green
, “Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids
,” J. Chem. Phys.
22
(3
), 398
–413
(1954
). 63.
J. M.
Hammersley
and P.
Clifford
, “Markov fields on finite graphs and lattices” (unpublished).64.
A. L.
Hodgkin
and A. F.
Huxley
, “A quantitative description of membrane current and its application to conduction and excitation in nerve
,” J. Physiol.
117
, 500
–544
(1952
). 65.
D. H.
Hubel
and T. N.
Wiesel
, “Receptive fields, binocular interaction and functional architecture in the cat visual cortex
,” J. Physiol.
160
, 106
–154
(1962
). 66.
E.
Izhikevich
, “Simple model of spiking neurons
,” IEEE Trans. Neural Netw.
14
(6
), 1569
–1572
(2003
). 67.
E.
Izhikevich
, “Neural excitability, spiking, and bursting
,” Int. J. Bifurcat. Chaos
10
, 1171
–1266
(2000
). 68.
E. T.
Jaynes
, “Information theory and statistical mechanics
,” Phys. Rev.
106
, 620
(1957
). 69.
Y.
Jiang
and D.
Ruelle
, “Analyticity of the susceptibility function for unimodal Markovian maps of the interval
,” Nonlinearity
18
, 2447
(2005
). 70.
M.
Kaiser
, R. L.
Jack
, and J.
Zimmer
, “Canonical structure and orthogonality of forces and currents in irreversible Markov chains
,” J. Stat. Phys.
170
(6
), 1019
–1050
(2018
). 71.
J. L.
Kaplan
and J. A.
Yorke
, “Chaotic behavior of multidimensional difference equations,” in Functional Differential Equations and Approximation of Fixed Points, edited by H.-O. Peitgen and H.-O. Walther (Springer, Berlin, 1979), pp. 204–227.72.
A.
Katok
and B.
Hasselblatt
, Introduction to the Modern Theory of Dynamical Systems
(Kluwer
, 1998
).73.
J. S.
Kirkaldy
, “Thermodynamics of the human brain
,” Biophys. J.
5
(6
), 981
–986
(1965
). 74.
H.
Korn
and P.
Faure
, “Is there chaos in the brain? II. Experimental evidence and related models
,” C. R. Biologies
326
, 787
–840
(2003
). 75.
R.
Kubo
, “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems
,” J. Phys. Soc. Jpn.
12
(6
), 570
–586
(1957
). 76.
L.
Lapicque
, “Recherches quantitatives sur l’excitation des nerfs traitée comme une polarisation
,” J. Physiol. Paris
9
, 620
–635
(1907
).77.
M.
Le Bellac
, F.
Mortessagne
, and G. G.
Batrouni
, Equilibrium and Non-Equilibrium Statistical Thermodynamics
(Cambridge University Press
, 2004
).78.
E. N.
Lorenz
, “Deterministic nonperiodic flow
,” J. Atmos. Sci.
20
, 130
–141
(1963
). 79.
R. S.
Mackay
and C.
Tresser
, “Transition to topological chaos for circle maps
,” Physica D
19
(2
), 206
–273
(1986
). 80.
C.
Maes
and M. H.
van Wieren
, “Time-symmetric fluctuations in nonequilibrium systems
,” Phys. Rev. Lett.
96
, 240601
(2006
). 81.
G.
Maillard
, Introduction to Chains with Complete Connections (Ecole Federale Polytechnique de Lausanne, 2007).82.
K.
Matsuoka
, “Stability conditions for nonlinear continuous neural networks with asymmetric connection weights
,” Neural Netw.
5
, 495
–500
(1992
). 83.
C.
Morris
and H.
Lecar
, “Voltage oscillations in the barnacle giant muscle fiber
,” Biophys. J.
35
(1
), 193
–213
(1981
). 84.
S. P.
Muscinelli
, W.
Gerstner
, and T.
Schwalger
, “How single neuron properties shape chaotic dynamics and signal transmission in random neural networks,” e-print arXiv (2018).85.
J.
Nagumo
, S.
Arimoto
, and S.
Yoshizawa
, “An active pulse transmission line simulating nerve axon
,” Proc. IRE
50
, 2061
–2070
(1962
). 86.
J.
Naudé
, B.
Cessac
, H.
Berry
, and B.
Delord
, “Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks
,” J. Neurosci.
33
, 15032
(2013
). 87.
S.
Newhouse
, D.
Ruelle
, and F.
Takens
, “Occurrence of strange axiom a attractors near quasiperiodic flows on ,
,” Commun. Math. Phys.
64
(1
), 35
–40
(1978
). 88.
MEA records actually a voltage activity on recording electrodes. Then, a spike sorting algorithm is used to attribute recorded voltage traces to neurons, and then, construct the spike train. Therefore, MEA could in principle allow to obtain the probability of having a spike pattern given the voltage history.
89.
A.
Le Ny
, “Introduction to (generalized) Gibbs measures
,” Ensaios Matematicos
15
, 1
–126
(2008
).90.
O.
Onicescu
and G.
Mihoc
, “Sur les chaînes statistiques
,” C. R. Acad. Sci. Paris
200
, 511
–512
(1935
).91.
L.
Onsager
, “Reciprocal relations in irreversible processes. I
,” Phys. Rev.
37
, 405
–426
(1931
). 92.
S.
Ostojic
and N.
Brunel
, “From spiking neuron models to linear-nonlinear models
,” PLoS Comput. Biol.
7
(1
), 1
–16
(2011
). 93.
W.
Parry
and M.
Pollicott
, “Zeta functions and the periodic orbit structure of hyperbolic dynamics
,” Astérisque
187
(188
), 1
–268
(1990
).94.
Y. B.
Pesin
, “Characteristic Lyapunov exponents and smooth ergodic theory
,” Usp. Mat. Nauk
32
(4
), 55
–112
(1977
).95.
J. W.
Pillow
, L.
Paninski
, V. J.
Uzzell
, E. P.
Simoncelli
, and E. J.
Chichilnisky
, “Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model
,” J. Neurosci.
25
(47
), 11003
–11013
(2005
). 96.
M.
Pollicott
, “On the rate of mixing of axiom a flows
,” Invent. Math.
81
(3
), 413
–426
(1985
). 97.
H.
Preissl
, W.
Lutzenberger
, and F.
Pulvermüller
, “Is there chaos in the brain?
,” Behav. Brain Sci.
19
(2
), 307
–308
(1996
). 98.
P.
Reynaud-Bouret
, V.
Rivoirard
, F.
Grammont
, and C.
Tuleau-Malot
, “Goodness-of-fit tests and nonparametric adaptive estimation for spike train analysis
,” J. Math. Neurosci.
4
, 3
(2014
). 99.
P.
Reynaud-Bouret
, V.
Rivoirard
, and C.
Tuleau-Malot
, “Inference of functional connectivity in Neurosciences via Hawkes processes,” in 1st IEEE Global Conference on Signal and Information Processing, Austin, TX, USA (2013).100.
F.
Rieke
, D.
Warland
, R.
de Ruyter van Steveninck
, and W.
Bialek
, Spikes: Exploring the Neural Code
(Bradford Books
, 1997
).101.
M.
Rudolph
and A.
Destexhe
, “Analytical integrate and fire neuron models with conductance-based dynamics for event driven simulation strategies
,” Neural Comput.
18
, 2146
–2210
(2006
). 102.
M.
Rudolph
and A.
Destexhe
, “How much can we trust neural simulation strategies?
,” Neurocomputing
70
(10–12
), 1966
–1969
(2007
). 103.
D.
Ruelle
, “Generalized zeta-functions for axiom A basic sets
,” Bull. Amer. Math. Soc.
82
, 153
–156
(1976
). 104.
105.
D.
Ruelle
, “Resonances for axiom A flows
,” J. Differential Geom.
25
(1
), 99
–116
(1987
). 106.
D.
Ruelle
, “Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics
,” J. Stat. Phys.
95
, 393
–468
(1999
). 107.
D.
Ruelle
, “A measure associated with axiom A attractors
,” Am. J. Math.
98
(3
), 619
–654
(1976
). 108.
D.
Ruelle
, “Nonequilibrium statistical mechanics near equilibrium: Computing higher-order terms
,” Nonlinearity
11
(1
), 5
–18
(1998
). 109.
D.
Ruelle
, “Differentiating the absolutely continuous invariant measure of an interval map f with respect to f
,” Commun. Math. Phys.
258
, 445
–453
(2005
). 110.
D.
Ruelle
and F.
Takens
, “On the nature of turbulence
,” Commun. Math. Phys.
20
, 167
–192
(1971
). 111.
E.
Schneidman
, M. J.
Berry
, R.
Segev
, and W.
Bialek
, “Weak pairwise correlations imply strongly correlated network states in a neural population
,” Nature
440
(7087
), 1007
–1012
(2006
). 112.
J.
Schuecker
, S.
Goedeke
, D.
Dahmen
, and M.
Helias
, “Functional methods for disordered neural networks,” e-print arXiv (2016).113.
114.
J.
Shlens
, G. D.
Field
, J. L.
Gauthier
, M. I.
Grivich
, D.
Petrusca
, A.
Sher
, A. M.
Litke
, and E. J.
Chichilnisky
, “The structure of multi-neuron firing patterns in primate retina
,” J. Neurosci.
26
(32
), 8254
(2006
). 115.
J.
Shlens
, G. D.
Field
, J. L.
Gauthier
, M.
Greschner
, A.
Sher
, A. M.
Litke
, and E. J.
Chichilnisky
, “The structure of large-scale synchronized firing in primate retina
,” J. Neurosci.
29
(15
), 5022
–5031
(2009
). 116.
E. P.
Simoncelli
, L.
Paninski
, J.
Pillow
, and O.
Schwartz
, “Characterization of neural responses with stochastic stimuli,” in The Cognitive Neurosciences, III, edited by M. Gazzaniga (MIT Press, 2004), Chap. 23, pp. 327–338.117.
Y.
Sinai
, “Gibbs measures in ergodic theory
,” Russ. Math. Surveys
27
(4
), 21
–69
(1972
). 118.
B.
Siri
, H.
Berry
, B.
Cessac
, B.
Delord
, and M.
Quoy
, “Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons
,” J. Physiol. Paris
101
, 136
(2007
). 119.
B.
Siri
, H.
Berry
, B.
Cessac
, B.
Delord
, and M.
Quoy
, “A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks
,” Neural Comput.
20
(12
), 12
(2008
). 120.
H.
Sompolinsky
, A.
Crisanti
, and H. J.
Sommers
, “Chaos in random neural networks
,” Phys. Rev. Lett.
61
(3
), 259
–262
(1988
). 121.
H.
Sompolinsky
and A.
Zippelius
, “Dynamic theory of the spin-glass phase
,” Phys. Rev. Lett.
47
(5
), 359
–362
(1981
). 122.
H.
Sompolinsky
and A.
Zippelius
, “Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses
,” Phys. Rev. B
25
(11
), 6860
–6875
(1982
). 123.
S.
Souihel
and B.
Cessac
, “Anticipation in the retina and the primary visual cortex: Towards an integrated retino-cortical model for motion processing,” in ICMNS 2019—The 5th International Conference on Mathematical NeuroScience, Copenhague, Denmark (2019).124.
G.
Tkacik
, T.
Mora
, O.
Marre
, D.
Amodei
, S. E.
Palmer
, M. J.
Berry
, and W.
Bialek
, “Thermodynamics and signatures of criticality in a network of neurons
,” Proc. Natl. Acad. Sci. U.S.A.
112
(37
), 11508
–11513
(2015
). 125.
G.
Tkačik
, E.
Schneidman
, M. J.
Berry
, and W.
Bialek
, “Spin glass models for a network of real neurons,” e-print arXiv:0912.5409 (2009).126.
T. K.
Tran
, “Large scale retinal modeling for the design of new generation retinal prostheses,” Ph.D. thesis (University of Nottingham, 2015).127.
N. G.
van Kampen
, “A discussion on linear response theory
,” Phys. Norv.
5
, 279
(1971
).128.
C.
VanVreeswijk
and H.
Sompolinsky
, “Chaotic balanced state in a model of cortical circuits
,” Neural Comput.
10
, 1321
–1372
(1998
). 129.
J. C.
Vasquez
, O.
Marre
, A.
Palacios
, M. J.
Berry
, and B.
Cessac
, “Gibbs distribution analysis of temporal correlation structure on multicell spike trains from retina ganglion cells
,” J. Physiol. Paris
106
(3–4
), 120
–127
(2012
). 130.
J. C.
Vasquez
, B.
Cessac
, H.
Rostro-Gonzalez
, and T.
Viéville
, “How Gibbs distributions may naturally arise from synaptic adaptation mechanisms. A model-based argumentation
,” J. Stat. Phys.
136
(3
), 565
–602
(2009
). 131.
H. R.
Wilson
and J. D.
Cowan
, “Excitatory and inhibitory interactions in localized populations of model neurons
,” Biophys. J.
12
, 1
–24
(1972
). 132.
H. R.
Wilson
and J. D.
Cowan
, “A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue
,” Biol. Cybern.
13
(2
), 55
–80
(1973
).133.
C. N.
Yang
and T. D.
Lee
, “Statistical theory of equations of state and phase transitions. I. Theory of condensation
,” Phys. Rev.
87
, 404
–409
(1952
). © 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.