In this study, a physical system called the blood ethanol concentration model has been investigated in its fractional (non-integer) order version. The three most commonly used fractional operators with singular (Caputo) and non-singular (Atangana-Baleanu fractional derivative in the Caputo sense—ABC and the Caputo-Fabrizio—CF) kernels have been used to fractionalize the model, whereas during the process of fractionalization, the dimensional consistency for each of the equations in the model has been maintained. The Laplace transform technique is used to determine the exact solution of the model in all three cases, whereas its parameters are fitted through the least-squares error minimization technique. It is shown that the fractional versions of the model based upon the Caputo and ABC operators estimate the real data comparatively better than the original integer order model, whereas the CF yields the results equivalent to the results obtained from the integer-order model. The computation of the sum of squared residuals is carried out to show the performance of the models along with some graphical illustrations.

1.
C.
Ludwin
, “
Blood alcohol content
,”
Undergrad. J. Math. Model. One+Two
3
(
2
),
1
(
2011
).
2.
K.
Diethelm
and
A. D
Freed
, “
On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity
,” in
Scientific Computing in Chemical Engineering II
(
Springer
,
Berlin
,
1999
), pp.
217
224
.
3.
A. D.
Freed
and
K.
Diethelm
, “
Fractional calculus in biomechanics: A 3D viscoelastic model using regularized fractional derivative kernels with application to the human calcaneal fat pad
,”
Biomech. Model. Mechanobiol.
5
(
4
),
203
215
(
2006
).
4.
W. M.
Ahmad
and
R.
El-Khazali
, “
Fractional-order dynamical models of love
,”
Chaos Solitons Fractals
33
(
4
),
1367
1375
(
2007
).
5.
J.
Sabatier
,
C.
Farges
, and
A
Oustaloup
, “
Fractional order models
,” in
Fractional Order Differentiation and Robust Control Design
, (
Springer
,
Dordrecht
,
2015
), pp.
1
61
.
6.
T. J.
Freeborn
,
B.
Maundy
, and
A. S.
Elwakil
, “
Fractional-order models of supercapacitors, batteries and fuel cells: A survey
,”
Mater. Renewable Sustainable Energ.
4
(
3
),
9
(
2015
).
7.
K. M.
Saad
,
D.
Baleanu
, and
A.
Atangana
, “
New fractional derivatives applied to the Korteweg–deVries and Korteweg–de Vries–Burger’s equations
,”
Comput. Appl. Math.
37
,
5203
5216
(
2018
).
8.
K
Diethelm
,
The Analysis of Fractional Differential Equations: An Application-oriented Exposition Using Differential Operators of Caputo Type
(
Springer Science & Business Media
,
2010
).
9.
N.
Taghizadeh
,
M.
Mirzazadeh
, and
F.
Farahrooz
, “
Exact solutions of the nonlinear Schrödinger equation by the first integral method
,”
J. Math. Anal. Appl.
374
(
2
),
549
553
(
2011
).
10.
D.
Baleanu
,
K.
Diethelm
,
E.
Scalas
, and
J. J
Trujillo
,
Fractional Calculus Models and Numerical Methods
. (
World Scientific
,
Singapore
,
2012
).
11.
K.
Diethelm
, “
A fractional calculus based model for the simulation of an outbreak of dengue fever
,”
Nonlinear Dyn.
71
(
4
),
613
619
(
2013
).
12.
M.
Mirzazadeh
,
M.
Eslami
,
E.
Zerrad
,
M. F.
Mahmood
,
A.
Biswas
, and
M.
Belic
, “
Optical solitons in nonlinear directional couplers by sine–cosine function method and Bernoulli’s equation approach
,”
Nonlinear Dyn.
81
(
4
),
1933
1949
(
2015
).
13.
J. F.
Gómez-Aguilar
,
H.
Yépez-Martínez
,
C.
Calderón-Ramón
,
I.
Cruz-Orduña
,
R. F.
Escobar-Jiménez
, and
V. H.
Olivares-Peregrino
, “
Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel
,”
Entropy
17
(
9
),
6289
6303
(
2015
).
14.
M.
Mirzazadeh
, “
A novel approach for solving fractional Fisher equation using differential transform method
,”
Pramana
86
(
5
),
957
963
(
2016
).
15.
M.
Ekici
,
M.
Mirzazadeh
, and
M.
Eslami
, “
Solitons and other solutions to Boussinesq equation with power law nonlinearity and dual dispersion
,”
Nonlinear Dyn.
84
(
2
),
669
676
(
2016
).
16.
A.
Yusuf
,
S.
Qureshi
,
M.
Inc
,
A. I.
Aliyu
,
D.
Baleanu
, and
A. A.
Shaikh
, “
Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel
,”
Chaos
28
(
12
),
123121
(
2018
).
17.
K. A.
Abro
,
A. A.
Memon
, and
M. A.
Uqaili
, “
A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives
,”
Eur. Phys. J. Plus
133
(
3
),
113
(
2018
).
18.
K. M.
Owolabi
and
A.
Atangana
, “
Chaotic behaviour in system of noninteger-order ordinary differential equations
,”
Chaos Solitons Fractals
115
,
362
370
(
2018
).
19.
J. F.
Gómez-Aguilar
, “
Fundamental solutions to electrical circuits of non-integer order via fractional derivatives with and without singular kernels
,”
Eur. Phys. J. Plus
133
(
5
),
197
(
2018
).
20.
S.
Ullah
,
M. A.
Khan
, and
M.
Farooq
, “
A fractional model for the dynamics of TB virus
,”
Chaos Solitons Fractals
116
,
63
71
(
2018
).
21.
S.
Ullah
,
M. A.
Khan
, and
M.
Farooq
, “
A new fractional model for the dynamics of the hepatitis B virus using the Caputo-Fabrizio derivative
,”
Eur. Phys. J. Plus
133
(
6
),
237
(
2018
).
22.
F.
Evirgen
and
M
Yavuz
,
An alternative approach for nonlinear optimization problem with Caputo-Fabrizio derivative
,”
ITM Web Conf.
22
,
01009
(
2018
).
23.
J. F.
Gómez–Aguilar
, “
Chaos in a nonlinear Bloch system with Atangana–Baleanu fractional derivatives
,”
Numer. Methods Partial Differ. Equ.
34
(
5
),
1716
1738
(
2018
).
24.
J. F.
Gómez-Aguilar
and
B.
Dumitru
, “
Fractional transmission line with losses
,”
Z. Naturforsch. A
69
(
10-11
),
539
546
(
2014
).
25.
R.
Almeida
,
N. R.
Bastos
, and
M. T. T.
Monteiro
, “
Modeling some real phenomena by fractional differential equations
,”
Math. Methods Appl. Sci.
39
(
16
),
4846
4855
(
2016
).
26.
E.
Bas
and
R.
Ozarslan
, “
Real world applications of fractional models by Atangana-Baleanu fractional derivative
,”
Chaos Solitons Fractals
116
,
121
125
(
2018
).
27.
A. R.
Kanth
and
N.
Garg
, “
Computational simulations for solving a class of fractional models via Caputo-Fabrizio fractional derivative
,”
Procedia Comput. Sci.
125
,
476
482
(
2018
).
28.
I
Podlubny
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
(
Elsevier
,
1998
), Vol. 198.
29.
A.
Atangana
and
D
Baleanu
, “
New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model
,”
Therm. Sci.
20
(2),
763
769
(
2016
).
30.
M.
Caputo
and
M.
Fabrizio
, “
A new definition of fractional derivative without singular kernel
,”
Prog. Fract. Differ. Appl.
1
(
2
),
73
85
(
2015
).
You do not currently have access to this content.