This work proposes a new edge about the Chaotic Genetic Algorithm (CGA) and the importance of the entropy in the initial population. Inspired by chaos theory, the CGA uses chaotic maps to modify the stochastic parameters of Genetic Algorithm. The algorithm modifies the parameters of the initial population using chaotic series and then analyzes the entropy of such population. This strategy exhibits the relationship between entropy and performance optimization in complex search spaces. Our study includes the optimization of nine benchmark functions using eight different chaotic maps for each of the benchmark functions. The numerical experiment demonstrates a direct relation between entropy and performance of the algorithm.

1.
G.
Fuertes
,
M.
Alfaro
,
I.
Soto
,
R.
Carrasco
,
D.
Iturralde
, and
C.
Lagos
, “Optimization model for location of RFID antennas in a supply chain,” in 7th International Conference on Computers Communications and Control (IEEE, 2018), pp. 203–209.
2.
M.
Angelova
and
T.
Pencheva
, “
Tuning genetic algorithm parameters to improve convergence time
,”
Int. J. Chem. Eng.
2011
,
1
7
.
3.
G.
Karafotias
,
M.
Hoogendoorn
, and
A. E.
Eiben
, “
Parameter control in evolutionary algorithms: Trends and challenges
,”
IEEE Trans. Evol. Comput.
19
(
2
),
167
187
(
2015
).
4.
G.
Fuertes
,
M.
Vargas
,
I.
Soto
,
K.
Witker
,
M.
Peralta
, and
J.
Sabattin
, “
Project-based learning versus cooperative learning courses in engineering students
,”
IEEE Latin Am. Trans.
13
,
3113
3119
(
2015
).
5.
H. M.
Pandey
,
A.
Chaudhary
, and
D.
Mehrotra
, “
A comparative review of approaches to prevent premature convergence in GA
,”
Appl. Soft Comput.
24
,
1047
1077
(
2014
).
6.
J.
Wei
and
P.
Wang
, “Optimization of fuzzy rule based on adaptive genetic algorithm and ant colony algorithm,” in 2010 International Conference on Computational and Information Sciences (IEEE, 2010), pp. 359–362.
7.
C.
Yanguang
,
Z.
Minjie
, and
C.
Hao
, “A hybrid chaotic quantum evolutionary algorithm,” in 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (IEEE, 2010), pp. 771–776.
8.
A.
Chatterjee
,
S.
Ghoshal
, and
V.
Mukherjee
, “
Chaotic ant swarm optimization for fuzzy-based tuning of power system stabilizer
,”
Int. J. Electr. Power Energy Syst.
33
(
3
),
657
672
(
2011
).
9.
L.
Song
and
X.
Xu
, “Flexible job shop scheduling problem solving based on genetic algorithm with chaotic local search,” in 2010 Sixth International Conference on Natural Computation (IEEE, 2010), pp. 2356–2360.
10.
H.
Lu
,
R.
Niu
,
J.
Liu
, and
Z.
Zhu
, “
A chaotic non-dominated sorting genetic algorithm for the multi-objective automatic test task scheduling problem
,”
Appl. Soft Comput.
13
(
5
),
2790
2802
(
2013
).
11.
Z.
Liang
,
J.
Liang
,
L.
Zhang
,
C.
Wang
,
Z.
Yun
, and
X.
Zhang
, “
Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis
,”
Appl. Energy
159
,
51
61
(
2015
).
12.
H.
Cui
,
Y.
Li
,
X.
Liu
,
N.
Ansari
, and
Y.
Liu
, “Cloud service reliability modelling and optimal task scheduling,” in IET Communications (Institution of Electrical Engineers, 2017), Vol. 11, pp. 161–167.
13.
Y.
Xue
,
J.
Jiang
,
B.
Zhao
, and
T.
Ma
, “
A self-adaptive artificial bee colony algorithm based on global best for global optimization
,”
Soft Comput.
22
(
9
),
2935
2952
(
2018
).
14.
R.
Ebrahimzadeh
and
M.
Jampour
, “
Chaotic genetic algorithm based on lorenz chaotic system for optimization problems
,”
Int. J. Intell. Syst. Appl.
05
(
05
),
19
24
(
2013
).
15.
H.
Liu
and
A.
Abraham
, “Chaos and swarm intelligence,” in Intelligent Computing Based on Chaos, Studies in Computational Intelligence, edited by K. Ljupco, G. Zbigniew, and L. Shiguo (Springer, Berlin, 2009), Vol. 184, pp. 197–212.
16.
M.
Bat-Erdene
,
T.
Kim
,
H.
Park
, and
H.
Lee
, “
Packer detection for multi-layer executables using entropy analysis
,”
Entropy
19
,
1
18
(
2017
).
17.
Y.
Zhang
and
L.
Wu
, “
Optimal multi-level thresholding based on maximum tsallis entropy via an artificial bee colony approach
,”
Entropy
13
,
841
859
(
2011
).
18.
Z.
Guo
,
X.
Yue
,
K.
Zhang
,
S.
Wang
, and
Z.
Wu
, “
A thermodynamical selection-based discrete differential evolution for the 0-1 Knapsack problem
,”
Entropy
16
,
6263
6285
(
2014
).
19.
E.
Solteiro Pires
,
J.
Tenreiro Machado
, and
P.
de Moura Oliveira
, “
Entropy diversity in multi-objective particle swarm optimization
,”
Entropy
15
(
12
),
5475
5491
(
2013
).
20.
P.
Lopez-Garcia
,
E.
Onieva
,
E.
Osaba
,
A.
Masegosa
, and
A.
Perallos
, “
GACE: A meta-heuristic based in the hybridization of genetic algorithms and cross entropy methods for continuous optimization
,”
Expert Syst. Appl.
55
,
508
519
(
2016
).
21.
Z.
Laboudi
and
S.
Chikhi
, “
Comparison of genetic algorithm and quantum genetic algorithm
,”
Int. Arab J. Inf. Technol.
9
(
3
),
243
249
(
2012
).
22.
A.
Terki
,
H.
Boubertakh
, and
N.
Mansouri
, “Synchronization of chaotic systems using genetic and particle swarms algorithms,” in 2016 8th International Conference on Modelling, Identification and Control (ICMIC) (IEEE, Algiers, 2016), pp. 671–676.
23.
M. H.
Mojarrad
and
P.
Ayubi
, “Particle swarm optimization with chaotic velocity clamping (CVC-PSO),” in 2015 7th Conference on Information and Knowledge Technology (IKT) (IEEE, Urmia, 2015), pp. 1–6.
24.
H.
Teng
,
B.
Zhao
, and
A.
Cao
, “Chaos quantum genetic algorithm based on Hénon map,” in 2010 International Conference on Intelligent Computation Technology and Automation (IEEE, Changsha, 2010), pp. 922–925.
25.
A.
Leontitsis
, Chaotic Systems Toolbox: Analysis of Chaotic Systems (Matlab, Mathworks, 2004).
26.
L.
Wang
, L.-p. Li
, “
An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systems
,”
Expert Syst. Appl.
37
,
1279
1285
(
2010
).
27.
S.
Siva Sathya
and
M.
Radhika
, “
Convergence of nomadic genetic algorithm on benchmark mathematical functions
,”
Appl. Soft Comput.
13
,
2759
2766
(
2013
).
28.
A.
Eiben
and
S.
Smit
, “
Parameter tuning for configuring and analyzing evolutionary algorithms
,”
Swarm Evol. Comput.
1
,
19
31
(
2011
).
29.
C. E.
Shannon
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
379
423
(
1948
).
30.
G.
Cheng
,
Z.
Zhang
,
M.
Kyebambe
, and
N.
Kimbugwe
, “
Predicting the outcome of NBA playoffs based on the maximum entropy principle
,”
Entropy
18
(
12
),
450
(
2016
).
31.
H.
Eguiraun
,
K.
López-de Ipiña
, and
I.
Martinez
, “
Application of entropy and fractal dimension analyses to the pattern recognition of contaminated fish responses in aquaculture
,”
Entropy
16
,
6133
6151
(
2014
).
You do not currently have access to this content.