We consider the motion of a droplet bouncing on a vibrating bath of the same fluid in the presence of a central potential. We formulate a rotation symmetry-reduced description of this system, which allows for the straightforward application of dynamical systems theory tools. As an illustration of the utility of the symmetry reduction, we apply it to a model of the pilot-wave system with a central harmonic force. We begin our analysis by identifying local bifurcations and the onset of chaos. We then describe the emergence of chaotic regions and their merging bifurcations, which lead to the formation of a global attractor. In this final regime, the droplet’s angular momentum spontaneously changes its sign as observed in the experiments of Perrard et al. [Phys. Rev. Lett.113(10), 104101 (2014)].

1.
L.
de Broglie
, “
Ondes et quanta
,”
C. R. Acad. Sci. Paris
177
,
507
510
(
1923
).
2.
Y.
Couder
,
E.
Fort
,
C.-H.
Gautier
, and
A.
Boudaoud
, “
From bouncing to floating: Noncoalescence of drops on a fluid bath
,”
Phys. Rev. Lett.
94
(
17
),
177801
(
2005
).
3.
Y.
Couder
,
S.
Protière
,
E.
Fort
, and
A.
Boudaoud
, “
Walking and orbiting droplets
,”
Nature
437
(
7056
),
208
(
2005
).
4.
Y.
Couder
and
E.
Fort
, “
Single-particle diffraction and interference at a macroscopic scale
,”
Phys. Rev. Lett.
97
(
15
),
154101
(
2006
).
5.
A.
Andersen
,
J.
Madsen
,
C.
Reichelt
,
S.
Rosenlund Ahl
,
B.
Lautrup
,
C.
Ellegaard
,
M. T.
Levinsen
, and
T.
Bohr
, “
Double-slit experiment with single wave-driven particles and its relation to quantum mechanics
,”
Phys. Rev. E
92
,
013006
(
2015
).
6.
G.
Pucci
,
D. M.
Harris
,
L. M.
Faria
, and
J. W. M.
Bush
, “
Walking droplets interacting with single and double slits
,”
J. Fluid Mech.
835
,
1136
1156
(
2018
).
7.
J. W. M.
Bush
, “
Pilot-wave hydrodynamics
,”
Annu. Rev. Fluid Mech.
47
(
1
),
269
292
(
2015
).
8.
E.
Fort
,
A.
Eddi
,
A.
Boudaoud
,
J.
Moukhtar
, and
Y.
Couder
, “
Path-memory induced quantization of classical orbits
,”
Proc. Natl. Acad. Sci. U.S.A.
107
(
41
),
17515
17520
(
2010
).
9.
D. M.
Harris
and
J. W. M.
Bush
, “
Droplets walking in a rotating frame: From quantized orbits to multimodal statistics
,”
J. Fluid Mech.
739
,
444
464
(
2014
).
10.
S.
Perrard
,
M.
Labousse
,
M.
Miskin
,
E.
Fort
, and
Y.
Couder
, “
Self-organization into quantized eigenstates of a classical wave-driven particle
,”
Nat. Commun.
5
,
3219
(
2014
).
11.
S.
Perrard
,
M.
Labousse
,
E.
Fort
, and
Y.
Couder
, “
Chaos driven by interfering memory
,”
Phys. Rev. Lett.
113
(
10
),
104101
(
2014
).
12.
A. U.
Oza
,
R. R.
Rosales
, and
J. W. M.
Bush
, “
A trajectory equation for walking droplets: Hydrodynamic pilot-wave theory
,”
J. Fluid Mech.
737
,
552
570
(
2013
).
13.
L. D.
Tambasco
,
D. M.
Harris
,
A. U.
Oza
,
R. R.
Rosales
, and
J. W. M.
Bush
, “
The onset of chaos in orbital pilot-wave dynamics
,”
Chaos
26
(
10
),
103107
(
2016
).
14.
B. P.
Luce
, “
Homoclinic explosions in the complex Ginzburg-Landau equation
,”
Physica D
84
,
553
581
(
1995
).
15.
P.
Cvitanović
,
R. L.
Davidchack
, and
E.
Siminos
, “
On the state space geometry of the Kuramoto-Sivashinsky flow in a periodic domain
,”
SIAM J. Appl. Dyn. Syst.
9
,
1
33
(
2009
).
16.
N. B.
Budanur
and
P.
Cvitanović
, “
Unstable manifolds of relative periodic orbits in the symmetry-reduced state space of the Kuramoto-Sivashinsky system
,”
J. Stat. Phys.
167
(
3
),
636
655
(
2017
).
17.
A. P.
Willis
,
P.
Cvitanović
, and
M.
Avila
, “
Revealing the state space of turbulent pipe flow by symmetry reduction
,”
J. Fluid Mech.
721
,
514
540
(
2013
).
18.
N. B.
Budanur
,
K. Y.
Short
,
M.
Farazmand
,
A. P.
Willis
, and
P.
Cvitanović
, “
Relative periodic orbits form the backbone of turbulent pipe flow
,”
J. Fluid Mech.
833
,
274
301
(
2017
).
19.
N. B.
Budanur
,
P.
Cvitanović
,
R. L.
Davidchack
, and
E.
Siminos
, “
Reduction of the SO(2) symmetry for spatially extended dynamical systems
,”
Phys. Rev. Lett.
114
,
084102
(
2015
).
20.
P.
Chossat
and
R.
Lauterbach
,
Methods in Equivariant Bifurcations and Dynamical Systems
(
World Scientific
,
Singapore
,
2000
).
21.
M.
Farazmand
, “
An adjoint-based approach for finding invariant solutions of Navier-Stokes equations
,”
J. Fluid Mech.
795
,
278
312
(
2016
).
22.
N. B.
Budanur
and
B.
Hof
, “
Heteroclinic path to spatially localized chaos in pipe flow
,”
J. Fluid Mech.
827
,
R1
(
2017
).
23.
N. B.
Budanur
and
B.
Hof
, “
Complexity of the laminar-turbulent boundary in pipe flow
,”
Phys. Rev. Fluids
3
,
054401
(
2018
).
24.
P.
Cvitanović
,
R.
Artuso
,
R.
Mainieri
,
G.
Tanner
, and
G.
Vattay
,
Chaos: Classical and Quantum
(
Niels Bohr Inst.
,
Copenhagen
,
2016
).
25.
C. W.
Rowley
and
J. E.
Marsden
, “
Reconstruction equations and the Karhunen-Loéve expansion for systems with symmetry
,”
Physica D
142
,
1
19
(
2000
).
26.
J.
Moláček
and
J. W. M.
Bush
, “
Drops bouncing on a vibrating bath
,”
J. Fluid Mech.
727
,
582
611
(
2013
).
27.
M.
Labousse
,
A. U.
Oza
,
S.
Perrard
, and
J. W. M.
Bush
, “
Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits
,”
Phys. Rev. E
93
,
033122
(
2016
).
28.
K. M.
Kurianski
,
A. U.
Oza
, and
J. W. M.
Bush
, “
Simulations of pilot-wave dynamics in a simple harmonic potential
,”
Phys. Rev. Fluids
2
,
113602
(
2017
).
29.
M.
Labousse
, “
Etude d’une dynamique à mémoire de chemin: une expérimentation théorique
,” Ph.D. thesis (
Université
Paris
6,
2014
).
30.
S.
Perrard
and
M.
Labousse
, “
Transition to chaos in wave memory dynamics in a harmonic well: Deterministic and noise-driven behavior
,”
Chaos
28
(
9
),
096109
(
2018
).
31.
G. N.
Watson
,
A Treatise on the Theory of Bessel Functions
(
Cambridge University Press
,
1944
).
32.
E.
Jones
,
T.
Oliphant
, and
P.
Peterson
et al., SciPy: Open source scientific tools for Python,
2001
.
33.
Y.
Kuznetsov
,
Elements of Applied Bifurcation Theory
, Applied Mathematical Sciences (
Springer
,
New York
,
2010
).
34.
E.
Doedel
,
H. B.
Keller
, and
J. P.
Kernevez
, “
Numerical analysis and control of bifurcation problems (i): Bifurcation in finite dimensions
,”
Int. J. Bifurcat. Chaos
01
(
03
),
493
520
(
1991
).
35.
J. W.
Swift
and
K.
Wiesenfeld
, “
Suppression of period doubling in symmetric systems
,”
Phys. Rev. Lett.
52
,
705
708
(
1984
).
36.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Chaotic attractors in crisis
,”
Phys. Rev. Lett.
48
,
1507
1510
(
1982
).
37.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Crises, sudden changes in chaotic attractors, and transient chaos
,”
Physica D
7
(
1
),
181
200
(
1983
).
38.
K. T.
Alligood
,
T. D.
Sauer
, and
J. A.
Yorke
,
Stable Manifolds and Crises
(
Springer
,
Berlin, Heidelberg
,
1997
), pp.
399
445
.
39.
T.
Itano
and
S.
Toh
, “
The dynamics of bursting process in wall turbulence
,”
J. Phys. Soc. Jpn.
70
,
701
714
(
2001
).
40.
S.
Toh
and
T.
Itano
, “
A periodic-like solution in channel flow
,”
J. Fluid Mech.
481
,
67
76
(
2003
).
41.
T. M.
Schneider
,
B.
Eckhardt
, and
J.
Yorke
, “
Turbulence, transition, and the edge of chaos in pipe flow
,”
Phys. Rev. Lett.
99
,
034502
(
2007
).
42.
T. M.
Schneider
,
J. F.
Gibson
,
M.
Lagha
,
F.
De Lillo
, and
B.
Eckhardt
, “
Laminar-turbulent boundary in plane Couette flow
,”
Phys. Rev. E
78
,
037301
(
2008
).
43.
F.
Mellibovsky
,
A.
Meseguer
,
T. M.
Schneider
, and
B.
Eckhardt
, “
Transition in localized pipe flow turbulence
,”
Phys. Rev. Lett.
103
,
054502
(
2009
).
44.
T. M.
Schneider
,
D.
Marinc
, and
B.
Eckhardt
, “
Localized edge states nucleate turbulence in extended plane Couette cells
,”
J. Fluid Mech.
646
,
441
451
(
2010
).
45.
S.
Zammert
and
B.
Eckhardt
, “
A spotlike edge state in plane Poiseuille flow
,”
Proc. Appl. Math. Mech.
14
,
591
592
(
2014
).
46.
T.
Khapko
,
T.
Kreilos
,
P.
Schlatter
,
Y.
Duguet
,
B.
Eckhardt
, and
D. S.
Henningson
, “
Edge states as mediators of bypass transition in boundary-layer flows
,”
J. Fluid Mech.
801
,
R2
(
2016
).
47.
P.
Chossat
and
M.
Golubitsky
, “
Symmetry-increasing bifurcation of chaotic attractors
,”
Physica D
32
(
3
),
423
436
(
1988
).
48.
S. E.
Newhouse
,
D.
Ruelle
, and
F.
Takens
, “
Occurrence of strange axiom A attractors near quasi-periodic flows on Tm(m=3 or more)
,”
Commun. Math. Phys.
64
,
35
(
1978
).
49.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos
(
Perseus Books
,
Cambridge, MA
,
2000
).
50.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
51.
P.
Cvitanović
, “
Periodic orbit theory in classical and quantum mechanics
,”
Chaos
2
(
1
),
1
4
(
1992
).
52.
M.
Durey
and
P. A.
Milewski
, “
Faraday wave-droplet dynamics: Discrete-time analysis
,”
J. Fluid Mech.
821
,
296
329
(
2017
).
53.
A. U.
Oza
,
Ø.
Wind-Willassen
,
D. M.
Harris
,
R. R.
Rosales
, and
J. W. M.
Bush
, “
Pilot-wave hydrodynamics in a rotating frame: Exotic orbits
,”
Phys. Fluids
26
(
8
),
082101
(
2014
).
You do not currently have access to this content.