We revise the solutions of the forced Korteweg–de Vries equation describing a resonant interaction of a solitary wave with external pulse-type perturbations. In contrast to previous work where only the limiting cases of a very narrow forcing in comparison with the initial soliton or a very narrow soliton in comparison with the width of external perturbation were studied, we consider here an arbitrary relationship between the widths of soliton and external perturbation of a relatively small amplitude. In many particular cases, exact solutions of the forced Korteweg–de Vries equation can be obtained for the specific forcings of arbitrary amplitude. We use the earlier developed asymptotic method to derive an approximate set of equations up to the second-order on a small parameter characterising the amplitude of external force. The analysis of exact solutions of the derived equations is presented and illustrated graphically. It is shown that the theoretical outcomes obtained by the asymptotic method are in a good agreement with the results of direct numerical modeling within the framework of forced Korteweg–de Vries equation.

1.
A.
Patoine
and
T.
Warn
, “
The interaction of long, quasistationary baroclinic waves with topography
,”
J. Atmos. Sci.
39
,
1018
1025
(
1982
).
2.
T.
Warn
and
B.
Brasnett
, “
The amplification and capture of atmospheric solitons by topography: A theory of the onset of regional blocking
,”
J. Atmos. Sci.
40
,
28
38
(
1983
).
3.
T. R.
Akylas
, “
On excitation of long nonlinear water waves by moving pressure distribution
,”
J. Fluid Mech.
141
,
455
466
(
1984
).
4.
S. L.
Cole
, “
Transient waves produced by flow past a bump
,”
Wave Motion
7
,
579
87
(
1985
).
5.
R.
Grimshaw
and
N.
Smyth
, “
Resonant flow of a stratified fluid over topography
,”
J. Fluid Mech.
169
,
29
64
(
1986
).
6.
R.
Grimshaw
, “
Resonant forcing of barotropic coastally trapped waves
,”
J. Phys. Oceanogr.
17
,
53
65
(
1987
).
7.
W. K.
Melville
and
K. R.
Helfrich
, “
Transcritical two-layer flow over topography
,”
J. Fluid Mech.
178
,
31
52
(
1987
).
8.
N.
Smyth
, “
Modulation theory solution for resonant flow over topography
,”
Proc. R. Soc. Lond. A
409
,
79
97
(
1987
).
9.
T. Y.
Wu
, “
Generation of upstream advancing solitons by moving disturbances
,”
J. Fluid Mech.
184
,
75
99
(
1987
).
10.
S. J.
Lee
,
G. T.
Yates
, and
T. Y.
Wu
, “
Experiments and analyses of upstream advancing solitary waves generated by moving disturbances
,”
J. Fluid Mech.
199
,
569
593
(
1989
).
11.
R.
Grimshaw
and
Y.
Zengxin
, “
Resonant generation of finite amplitude waves by the flow of a uniformly stratified fluid over topography
,”
J. Fluid Mech.
229
,
603
628
(
1991
).
12.
H.
Mitsudera
and
R.
Grimshaw
, “
Generation of mesoscale variability by resonant interaction between a baroclinic current and localized topography
,”
J. Phys. Oceanogr.
21
,
737
765
(
1991
).
13.
R.
Grimshaw
, “
Resonant flow of a rotating fluid past an obstacle: The general case
,”
Stud. Appl. Math.
83
,
249
269
(
1990
).
14.
R.
Grimshaw
, “
Transcritical flow past an obstacle
,”
ANZIAM J.
52
,
1
25
(
2010
).
15.
R. H. J.
Grimshaw
and
M.
Maleewong
, “
Transcritical flow over two obstacles: Forced Korteweg–de Vries framework
,”
J. Fluid Mech.
809
,
918
940
(
2016
).
16.
R.
Grimshaw
,
E.
Pelinovsky
, and
X.
Tian
, “
Interaction of a solitary wave with an external force
,”
Physica D
77
,
405
433
(
1994
).
17.
R.
Grimshaw
,
E.
Pelinovsky
, and
P.
Sakov
, “
Interaction of a solitary wave with an external force moving with variable speed
,”
Stud. Appl. Math.
97
,
235
276
(
1996
).
18.
R.
Grimshaw
,
E.
Pelinovsky
, and
A.
Bezen
, “
Hysteresis phenomena in the interaction of a damped solitary wave with an external force
,”
Wave Motion
26
,
253
274
(
1997
).
19.
E.
Pelinovsky
, “
Autoresonance processses under interaction of solitary waves with the external fields
,”
Hydromechanics
2
,
67
73
(
2000
).
20.
R.
Grimshaw
and
E.
Pelinovsky
, “
Interaction of a solitary wave with an external force in the extended Korteweg–de Vries equation
,”
Int. J. Bifurcation Chaos
12
,
2409
2419
(
2002
).
21.
B. A.
Malomed
, “
Interaction of a moving dipole with a soliton in the KdV equation
,”
Physica D Nonlinear Phenom.
32
,
393
408
(
1988
).
22.
R.
Grimshaw
and
H.
Mitsudera
, “
Slowly-varying solitary wave solutions of the perturbed Korteweg–de Vries equation revisited
,”
Stud. Appl. Math.
90
,
75
86
(
1993
).
23.
R.
Lin
,
Y.
Zeng
, and
W.-X.
Ma
, “
Solving the KdV hierarchy with self-consistent sources by inverse scattering method
,”
Physica A
291
,
287
298
(
2001
).
24.
M.
Wang
, “
Exact solutions for a compound KdV-Burgers equation
,”
Phys. Lett. A
213
,
279
287
(
1996
).
25.
L. A.
Ostrovsky
,
E. N.
Pelinovsky
,
V. I.
Shrira
, and
Y. A.
Stepanyants
, “
Beyond the KdV: Post-explosion development
,”
Chaos
25
,
097620
(
2015
).
26.
R.
Grimshaw
and
X.
Tian
, “
Periodic and chaotic behaviour in a reduction of the perturbed Korteweg–de Vries equation
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
445
,
1
21
(
1994
).
27.
M.
Cabral
and
R.
Rosa
, “
Chaos for a damped and forced KdV equation
,”
Physica D
192
,
265
278
(
2004
).
28.
E. A.
Cox
,
M. P.
Mortell
,
A. V.
Pokrovskii
, and
O.
Rasskazov
, “
On chaotic wave patterns in periodically forced steady-state KdVB and extended KdVB equations
,”
Proc. R. Soc. A
461
,
2857
2885
(
2005
).
29.
M.
Obregon
and
Y.
Stepanyants
, “
On numerical solution of the Gardner–Ostrovsky equation
,”
Math. Model. Nat. Phenom.
7
,
113
130
(
2012
).
30.
A.
Ermakov
and
Y.
Stepanyants
, see https://kdvforcing.wordpress.com/ for soliton interactions with external forcing within the Korteweg–de Vries equation.
You do not currently have access to this content.