In this paper, we re-explore in detail the techniques employed in P. A. P. Moran’s original proof for a key result in fractal geometry allowing the calculation of the Hausdorff dimension of attractors of iterated function systems constructed by similitudes.

1.
P. A. P.
Moran
, “
Additive functions of intervals and Hausdorff measure
,”
Math. Proc. Camb. Philos. Soc.
42
(
1
),
15
23
(
1946
).
2.
G. A.
Edgar
,
Classics on Fractals
(
Addison-Wesley
,
Reading, MA
,
1993
).
3.
M.
Fernández-Martínez
, “
A survey on fractal dimension for fractal structures
,”
Appl. Math. Nonlinear Sci.
1
(
2
),
437
472
(
2016
).
4.
J.
Gani
, “
Patrick Alfred Pierce Moran, 1917-1988
,”
Bull. Inst. Math. Stat.
17
,
449
(
1988
).
5.
P. G.
Hall
, “
Obituary: Patrick Alfred Pierce Moran 1917-1988
,”
Biometrics
45
(
2
),
687
692
(
1989
).
6.
C. A. B.
Smith
, “
Obituary: Pat Moran, 1917-1988
,”
J. R. Stat. Soc. A
152
,
419
(
1989
).
7.
C. C.
Heyde
, “
Patrick Alfred Pierce Moran, 14 July 1917 - 19 September 1988
,”
Biogr. Mem. Fellows R. Soc.
37
,
365
379
(
1991
).
8.
E. J.
Hannan
, “
Obituary: Some memories of Pat Moran
,”
J. Appl. Probab.
26
(
1
),
215
218
(
1989
).
You do not currently have access to this content.