Given a time-dependent stochastic process with trajectories x(t) in a space Ω, there may be sets such that the corresponding trajectories only very rarely cross the boundaries of these sets. We can analyze such a process in terms of metastability or coherence. Metastable setsM are defined in space MΩ, and coherent setsM(t)Ω are defined in space and time. Hence, if we extend the space Ω by the time-variable t, coherent sets are metastable sets in Ω×[0,) of an appropriate space-time process. This relation can be exploited, because there already exist spectral algorithms for the identification of metastable sets. In this article, we show that these well-established spectral algorithms (like PCCA+, Perron Cluster Cluster Analysis) also identify coherent sets of non-autonomous dynamical systems. For the identification of coherent sets, one has to compute a discretization (a matrix T) of the transfer operator of the process using a space-time-discretization scheme. The article gives an overview about different time-discretization schemes and shows their applicability in two different fields of application.

1.
I.
Barth
,
H.-C.
Hege
,
H.
Ikeda
,
A.
Kenfack
,
M.
Koppitz
,
J.
Manz
,
F.
Marquardt
, and
G. K.
Paramonov
, “
Concerted quantum effects of electronic and nuclear fluxes in molecules
,”
Chem. Phys. Lett.
481
(
1
),
118
123
(
2009
).
2.
C.
Bollmeyer
,
J. D.
Keller
,
C.
Ohlwein
,
S.
Wahl
,
S.
Crewell
,
P.
Friederichs
,
A.
Hense
,
J.
Keune
,
S.
Kneifel
,
I.
Pscheidt
et al., “
Towards a high-resolution regional reanalysis for the European CORDEX domain
,”
Q. J. R. Meteorol. Soc.
141
(
686
),
1
15
(
2015
).
3.
A.
Bovier
and
F.
den Hollander
,
Metastability—A Potential-Theoretic Approach
(
Springer
,
2015
).
4.
G. R.
Bowman
,
V. S.
Pande
, and
F.
Noé
,
An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
(
Springer Science & Business Media
,
2013
), Vol. 797.
5.
G. R.
Bowman
,
V. S.
Pande
, and
F.
Noé
,
An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
(
Springer Science & Business Media
,
2013
), Vol. 797.
6.
A.
Bujotzek
, “Molecular simulation of multivalent ligand-receptor systems,” Ph.D. thesis (Freie Universität, Berlin, 2013).
7.
C.
Chicone
and
Y.
Latushkin
,
Evolution Semigroups in Dynamical Systems and Differential Equations
(
American Mathematical Society
,
1999
), Vol. 70.
8.
J. D.
Chodera
and
F.
Noé
, “
Markov state models of biomolecular conformational dynamics
,”
Curr. Opin. Struct. Biol.
25
,
135
144
(
2014
).
9.
M.
Dellnitz
and
O.
Junge
, “
On the approximation of complicated dynamical behavior
,”
SIAM J. Numer. Anal.
36
(
2
),
491
515
(
1999
).
10.
P.
Deuflhard
,
M.
Dellnitz
,
O.
Junge
, and
C.
Schütte
, “Computation of essential molecular dynamics by subdivision techniques,” in Computational Molecular Dynamics, edited by P. Deuflhard et al. (Springer, 1998), Vol. 4, pp. 98–115.
11.
P.
Deuflhard
and
M.
Weber
, “
Robust Perron cluster analysis in conformation dynamics
,”
Linear Algebra Appl.
398
,
161
184
(
2005
) (398 special issue on matrices and mathematical biology).
12.
P.
Deuflhard
,
W.
Huisinga
,
A.
Fischer
, and
Ch.
Schütte
, “
Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains
,”
Linear Algebra Appl.
315
(
1–3
),
39
59
(
2000
).
13.
K.
Fackeldey
,
A.
Sikorski
, and
M.
Weber
, “
Spectral clustering for non-reversible Markov chains
,”
Comput. Appl. Math.
37
(
5
),
6376
6391
(
2018
).
14.
K.
Fackeldey
and
M.
Weber
, “GenPCCA—Markov state models for non-equilibrium steady states,” Big data clustering: Data preprocessing, variable selection, and dimension reduction, WIAS Report No. 29, 2017, pp. 70–80.
15.
M.
Weber
and
K.
Fackeldey
, “G-PCCA: Spectral Clustering for Non-reversible Markov Chains,” ZIB Report, No. 35, 2015, urn:nbn:de:0297-zib-55505.
16.
G.
Froyland
, “
Dynamic isoperimetry and the geometry of Lagrangian coherent structures
,”
Nonlinearity
28
(
10
),
3587
(
2015
).
17.
G.
Froyland
and
P.
Koltai
, “
Estimating long-term behavior of periodically driven flows without trajectory integration
,”
Nonlinearity
30
(
5
),
1948
(
2017
).
18.
G.
Froyland
, and
K.
Padberg-Gehle
, “Almost-invariant and finite-time coherent sets: Directionality, duration, and diffusion,” in Ergodic Theory, Open Dynamics, and Coherent Structures, edited by W. Bahsoun, C. Bose, and G. Froyland (Springer, New York, NY, 2014), pp. 171–216.
19.
G.
Froyland
,
N.
Santitissadeekorn
, and
A.
Monahan
, “
Transport in time-dependent dynamical systems: Finite-time coherent sets
,”
Chaos
20
(
4
),
043116
(
2010
).
20.
G.
Froyland
, “
An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems
,”
Physica D
250
,
1
19
(
2013
).
21.
G.
Froyland
and
K.
Padberg
, “
Almost-invariant sets and invariant manifolds—Connecting probabilistic and geometric descriptions of coherent structures in flows
,”
Physica D
238
(
16
),
1507
1523
(
2009
).
22.
C.
Gonzalez-Tokman
, “
Multiplicative ergodic theorems for transfer operators: Towards the identification and analysis of coherent structures in non-autonomous dynamical systems
,”
Contemp. Math.
709
,
31
52
(
2018
).
23.
H.-C.
Hege
,
J.
Manz
,
F.
Marquardt
,
B.
Paulus
, and
A.
Schild
, “
Electron flux during pericyclic reactions in the tunneling limit: Quantum simulation for cyclooctatetraene
,”
Chem. Phys.
376
(
1
),
46
55
(
2010
).
24.
G.
Hermann
,
V.
Pohl
,
J. C.
Tremblay
,
B.
Paulus
,
H.-C.
Hege
, and
A.
Schild
, “
ORBKIT: A modular python toolbox for cross-platform postprocessing of quantum chemical wavefunction data
,”
J. Comput. Chem.
37
(
16
),
1511
1520
(
2016
).
25.
W.
Huisinga
,
S.
Meyn
, and
C.
Schütte
, “
Phase transitions and metastability in Markovian and molecular systems
,”
Ann. Appl. Probab.
14
(
1
),
419
458
(
2004
).
26.
W.
Huisinga
and
B.
Schmidt
, “Metastability and dominant eigenvalues of transfer operators,” in New Algorithms for Macromolecular Simulation, edited by B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, and R. Skeel (Springer, Berlin, Heidelberg, 2006), pp. 167–182.
27.
Itseez, “Open source computer vision library” (2015), see https://github.com/itseez/opencv.
28.
T. H.
Dunning Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
(
2
),
1007
1023
(
1989
).
29.
S.
Klus
,
P.
Koltai
, and
Ch.
Schütte
, “
On the numerical approximation of the Perron–Frobenius and Koopman operator
,”
J. Comput. Dyn.
3
(
1
),
51
79
(
2016
).
30.
P.
Koltai
,
G.
Ciccotti
, and
C.
Schütte
, “
On metastability and Markov state models for non-stationary molecular dynamics
,”
J. Chem. Phys.
145
,
174103
(
2016
).
31.
S.
Kube
and
M.
Weber
, “
Preserving the Markov property of reduced reversible Markov chains
,”
AIP Conf. Proc.
1048
,
593
(
2008
).
32.
A.
Lasota
and
M. C.
Mackey
,
Chaos, Fractals, and Noise
, 2nd ed. (
Springer
,
1994
).
33.
H. C.
Lie
,
K.
Fackeldey
, and
M.
Weber
, “
A square root approximation of transition rates for a Markov state model
,”
SIAM J. Matrix Anal. Appl.
34
,
738
756
(
2013
).
34.
A.
Nielsen
, “Computation schemes for transfer operators,” Ph.D. thesis (Freie Universität Berlin, 2016).
35.
See http:cosmo-model.org for “Consortium for Small Scale Modelling.”
36.
F.
Nüske
,
B. G.
Keller
,
G.
Pérez-Hernández
,
A. S. J. S.
Mey
, and
F.
Noé
, “
Variational approach to molecular kinetics
,”
J. Chem. Theory Comput.
10
,
1739
1752
(
2014
).
37.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
, “
Markov models of molecular kinetics: Generation and validation
,”
J. Chem. Phys.
134
(
17
),
174105
(
2011
).
38.
B.
Reuter
,
M.
Weber
,
K.
Fackeldey
,
S.
Röblitz
, and
M. E.
Garcia
, “
Generalized Markov state modeling method for nonequilibrium biomolecular dynamics: Exemplified on amyloid β conformational dynamics driven by an oscillating electric field
,”
J. Chem. Theory Comput.
14
(
7
),
3579
3594
(
2018
).
39.
M. K.
Scherer
,
B.
Trendelkamp-Schroer
,
F.
Paul
,
G.
Pérez-Hernández
,
M.
Hoffmann
,
N.
Plattner
,
C.
Wehmeyer
,
J.-H.
Prinz
, and
F.
Noé
, “
PyEMMA 2: A software package for estimation, validation, and analysis of Markov models
,”
J. Chem. Theory Comput.
11
,
5525
5542
(
2015
).
40.
A.
Schild
, “Electron fluxes during chemical processes in the electronic ground state,” Ph.D. thesis (Freie Universität Berlin, Berlin, 2013).
41.
C.
Schütte
and
M.
Sarich
, Metastability and Markov State Models in Molecular Dynamics, Number 34 in Courant Lecture Notes (American Mathematical Society, 2013).
42.
C.
Schütte
and
H.
Wang
, “
Building Markov state models for periodically driven non-equilibrium systems
,”
J. Chem. Theory Comput.
11
(
4
),
1819
1831
(
2015
).
43.
C.
Schütte
, “Conformational dynamics: Modelling, theory, algorithm, and application to biomolecules,” Habilitation thesis (Freie Universität Berlin, 1998).
44.
C.
Schutte
,
A.
Fischer
,
W.
Huisinga
, and
P.
Deuflhard
, “
A direct approach to conformational dynamics based on hybrid Monte Carlo
,”
J. Comput. Phys.
151
(
1
),
146
168
(
1999
).
45.
C.
Simmer
,
G.
Adrian
,
S.
Jones
,
V.
Wirth
,
M.
Göber
,
C.
Hohenegger
,
T.
Janjic
,
J.
Keller
,
C.
Ohlwein
,
A.
Seifert
et al., “
HErZ: The German Hans-Ertel Centre for Weather Research
,”
Bull. Am. Meteorol. Soc.
97
(
6
),
1057
1068
(
2016
).
46.
S. M.
Ulam
,
A Collection of Mathematical Problems
(
Interscience Publisher
,
New York, NY
,
1960
).
47.
S.
Wahl
,
C.
Bollmeyer
,
S.
Crewell
,
C.
Figura
,
P.
Friederichs
,
A.
Hense
,
J. D.
Keller
, and
C.
Ohlwein
, “
A novel convective-scale regional reanalyses COSMO-REA2: Improving the representation of precipitation
,”
Meteorol. Z.
26
(
4
),
345
361
(
2017
).
48.
M.
Weber
, “A subspace approach to molecular Markov state models via a new infinitesimal generator,” Habilitation thesis (Fachbereich Mathematik und Informatik, Freie Universität Berlin, 2011).
49.
M.
Weber
and
K.
Fackeldey
, “GenPCCA: Spectral clustering for non-reversible Markov chains,” ZIB Report ZR-15-35, Zuse Institute Berlin (ZIB), 2015.
50.
M.
Weber
, “Meshless methods in conformation dynamics.” Ph.D. thesis (Freie Universität Berlin, 2006).
51.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
et al., molpro, version 2015.1, a package of ab initio programs, 2015, see http://www.molpro.net.
52.
A.
Yilmaz
,
O.
Javed
, and
M.
Shah
, “
Object tracking: A survey
.”
J. ACM Comput. Surv.
38
(
4
),
1
(
2006
) (Article No. 13).
You do not currently have access to this content.