A droplet bouncing on the surface of a vibrating liquid bath can move horizontally guided by the wave it produces on impacting the bath. The wave itself is modified by the environment, and thus, the interactions of the moving droplet with the surroundings are mediated through the wave. This forms an example of a pilot-wave system. Taking the Oza–Rosales–Bush description for walking droplets as a theoretical pilot-wave model, we investigate the dynamics of two interacting identical, in-phase bouncing droplets theoretically and numerically. A remarkably rich range of behaviors is encountered as a function of the two system parameters, the ratio of inertia to drag, , and the ratio of wave forcing to drag, . The droplets typically travel together in a tightly bound pair, although they unbind when the wave forcing is large and inertia is small or inertia is moderately large and wave forcing is moderately small. Bound pairs can exhibit a range of trajectories depending on parameter values, including straight lines, sub-diffusive random walks, and closed loops. The droplets themselves may maintain their relative positions, oscillate toward and away from one another, or interchange positions regularly or chaotically as they travel. We explore these regimes and others and the bifurcations between them through analytic and numerical linear stability analyses and through fully nonlinear numerical simulation.
Skip Nav Destination
Article navigation
September 2018
Research Article|
September 21 2018
Pilot-wave dynamics of two identical, in-phase bouncing droplets
Special Collection:
Hydrodynamic Quantum Analogs
Rahil N. Valani
;
Rahil N. Valani
a)
1
School of Physics and Astronomy, Monash University
, Clayton, Victoria 3800, Australia
Search for other works by this author on:
Anja C. Slim
Anja C. Slim
2
School of Mathematical Sciences, Monash University
, Clayton, Victoria 3800, Australia
3
School of Earth, Atmosphere and Environment, Monash University
, Clayton, Victoria 3800, Australia
Search for other works by this author on:
a)
Electronic mail: rahil.valani@monash.edu
Chaos 28, 096114 (2018)
Article history
Received:
April 03 2018
Accepted:
August 27 2018
Citation
Rahil N. Valani, Anja C. Slim; Pilot-wave dynamics of two identical, in-phase bouncing droplets. Chaos 1 September 2018; 28 (9): 096114. https://doi.org/10.1063/1.5032128
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Pay-Per-View Access
$40.00
Citing articles via
Sex, ducks, and rock “n” roll: Mathematical model of sexual response
K. B. Blyuss, Y. N. Kyrychko
Nonlinear comparative analysis of Greenland and Antarctica ice cores data
Berenice Rojo-Garibaldi, Alberto Isaac Aguilar-Hernández, et al.
Focus on the disruption of networks and system dynamics
Peng Ji, Jan Nagler, et al.