Bouncing fluid droplets can walk on the surface of a vibrating bath forming a wave-particle association. Walking droplets have many quantum-like features. Research efforts are continuously exploring quantum analogues and respective limitations. Here, we demonstrate that two oscillating particles (millimetric droplets) confined to separate potential wells exhibit correlated dynamical features, even when separated by a large distance. A key feature is the underlying wave mediated dynamics. The particles’ phase space dynamics is given by the system as a whole and cannot be described independently. Numerical phase space histograms display statistical coherence; the particles’ intricate distributions in phase space are statistically indistinguishable. However, removing one particle changes the phase space picture completely, which is reminiscent of entanglement. The model here presented also relates to nonlinearly coupled oscillators where synchronization can break out spontaneously. The present oscillator-coupling is dynamic and can change intensity through the underlying wave field as opposed to, for example, the Kuramoto model where the coupling is pre-defined. There are some regimes where we observe phase-locking or, more generally, regimes where the oscillators are statistically indistinguishable in phase-space, where numerical histograms display their (mutual) most likely amplitude and phase.

1.
Y.
Couder
,
S.
Protière
,
E.
Fort
, and
A.
Boudaoud
, “
Walking and orbiting droplets
,”
Nature
437
,
208
(
2005
).
2.
B.
Benjamin
and
F.
Ursell
, “
The stability of the plane free surface of a liquid in vertical periodic motion
,”
Proc. R. Soc.
225
,
505
(
1954
).
3.
J.
Bush
, “
Pilot-wave hydrodynamics
,”
Annu. Rev Fluid Mech.
47
,
269
(
2015
).
4.
S.
Perrard
,
M.
Labousse
,
M.
Miskin
,
E.
Fort
, and
Y.
Couder
, “
Self-organization into quantized eigenstates of a classical wave-driven particle
,”
Nature Commun.
5
,
3219
(
2014
).
5.
Y.
Couder
and
E.
Fort
, “
Single particle diffraction and interference at a macroscopic scale
,”
Phys. Rev. Lett.
97
,
154101
(
2006
).
6.
A.
Eddi
,
E.
Fort
,
F.
Moisy
, and
Y.
Couder
, “
Unpredictable tunneling of a classical wave-particle association
,”
Phys. Rev Lett.
102
,
240401
1
(
2009
).
7.
P.
Sáenz
,
T.
Cristea-Platon
, and
J.
Bush
, “
Statistical projection effects in a hydrodynamic pilot-wave system
,”
Nature Comms.
437
,
208
(
2017
).
8.
D.
Harris
,
J.
Moukhtar
,
E.
Fort
,
Y.
Couder
, and
J.
Bush
, “
Wavelike statistics from pilot-wave dynamics in a circular corral
,”
Phys. Rev. E
88
,
011001
(
2013
).
9.
K.
O’Keeffe
,
H.
Hong
, and
S.
Strogatz
, “
Oscillators that sync and swarm
,”
Nature Comm.
8
,
1504
(
2017
).
10.
J.
Acebrón
,
L.
Bonilla
,
V.
Perez.
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
,
137
185
(
2005
).
11.
F.
Dorfler
and
F.
Bullo
, “
Synchronization in complex networks of phase oscillators: A survey
,”
Automatica
50
,
1539
1564
(
2014
).
12.
A.
Valdés-Hernández
,
L.
de la Peña
, and
A.
Cetto
, “
Bipartite entanglement induced by a common background (zero-point) radiation field
,”
Found. Phys.
41
,
843
862
(
2011
).
13.
L.
de la Peña
,
A.
Cetto
, and
A.
Valdés-Hernández
,
The Emerging Quantum
(
Springer International Publishing
,
2015
).
14.
P.
Milewski
,
C.
Galeano-Rios
,
A.
Nachbin
, and
J.
Bush
, “
Faraday pilot-wave dynamics: Modeling and computation
,”
J. Fluid Mech.
778
,
361
(
2015
).
15.
A.
Nachbin
,
P.
Milewski
, and
J.
Bush
, “
Tunneling with a hydrodynamic pilot-wave model
,”
Phys. Rev. Fluids
2
,
034801
(
2017
).
16.
M.
Hubert
,
M.
Labousse
, and
S.
Perrard
, “
Self-propulsion and crossing statistics under random initial conditions
,”
Phys. Rev. E
95
,
062607
(
2017
).
17.
T.
Gilet
and
J.
Bush
, “
Chaotic bouncing of a drop on a soap film
,”
Phys. Rev. Lett.
102
,
014501
(
2009
).
18.
J.
Moláček
and
J.
Bush
, “
Droplets bouncing on a vibrating bath
,”
J. Fluid Mech.
727
,
582
611
(
2013
).
19.
J.
Moláček
and
J.
Bush
, “
Droplets walking on a vibrating fluid bath: Towards a hydrodynamic pilot-wave theory
,”
J. Fluid Mech.
727
,
612
647
(
2013
).
20.
T.
Driscoll
and
L.
Trefethen
,
Schwarz-Christoffel Mapping
(
Cambridge University Press
,
Cambridge
,
2002
).
21.
J.
Walker
, “
Drops of liquid can be made to float on the liquid
,”
Sci. Am.
238
,
151
(
1978
).
22.
A.
Oza
,
E.
Siéfert
,
D.
Harris
,
J.
Moláček
, and
J.
Bush
, “
Orbiting pairs of walking droplets: Dynamics and stability
,”
Phys. Rev. Fluids
2
,
053601
(
2017
).
23.
R.
Horodecki
,
P.
Horodecki
,
M.
Horodecki
, and
K.
Horodecki
, “
Quantum entanglement
,”
Rev. Mod. Phys.
81
,
865
942
(
2009
).
24.
P.
Sáenz
,
G.
Pucci
,
A.
Goujon
,
T.
Cristea-Platon
,
J.
Dunkel
, and
J.
Bush
, “
Phys. Rev. Fluids
(to be published).
25.
S.
Strogatz
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Physica D
143
,
1
20
(
2000
).
26.
A.
Oza
,
R.
Rosales
, and
J.
Bush
, “
A trajectory equation for walking droplets: Hydrodynamic pilot-wave theory
,”
J. Fluid Mech.
73
,
552
570
(
2013
).
You do not currently have access to this content.